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Abstract: A recent electricity price forecasting study claims that the German intraday, continuous-time1

market for hourly products is weak-form efficient, i.e., that the best predictor for the so-called2

ID3-Price index is the most recent transaction price. Here, we undermine this claim and show3

that we can beat the naïve forecast by combining it with a prediction of a parameter-rich model4

estimated using the least absolute shrinkage and selection operator (LASSO). We further argue,5

that that if augmented with timely predictions of fundamental variables for the coming hours, the6

LASSO-estimated model itself can significantly outperform the naïve forecast.7

Keywords: Intraday electricity market; ID3-Price index; Price forecasting; Variable selection;8

Fundamental variables; LASSO; Averaging forecasts9

1. Introduction10

After performing a comprehensive empirical study on intraday electricity price forecasting and11

considering models with tens of thousands of regressors, Narajewski and Ziel [1] conclude that the12

German continuous-time market for hourly products is weak-form efficient, i.e., that the best predictor13

is the most recent transaction price. Their result is surprising and at the same time disappointing from14

a research perspective. Here, we undermine their claim and show that it is possible to build models15

that significantly outperform the naïve benchmark. Consequently, we invalidate the conjecture that16

the German intraday market for hourly products is weak-form efficient.17

This paper belongs to a new strand of literature on forecasting prices in intraday electricity18

markets. To date, the workhorse of power trading in Europe has been the uniform price auction,19

and a vast majority of research and applications have concerned day-ahead (DA) electricity prices [2].20

However, the rapid expansion and integration of renewable energy sources (most notably wind and21

solar), active demand side management (smart meters, smart appliances, etc.) and the introduction22

of the XBID pan-European trading platform have shifted the focus to intraday markets [3,4]. One23

of the more liquid – and hence more studied – marketplaces, is the German intraday market for24

quarter-hourly and hourly products [5–11]. In this continuous-time market, the majority of trading25

takes place in the last couple of hours before gate closure [12] and on the hourly products [1]; the latter26

are traded from 15:00 on day d− 1 until 5 minutes before the delivery starts on day d, or 30 minutes27

before if the trade is made between the delivery zones. The leading reference price is the so-called28

ID3-Price index (or simply ID3), which is also an underlying instrument of exchange-traded derivative29

products (see www.eex.com). The index is computed as the volume-weighted average price of all30

trades on the quarter-hourly and hourly products in the three hour window directly preceding the31

delivery (see www.epexspot.com).32

In this article, we focus on predicting the ID3-Price index a few hours-ahead and develop33

regression type models that outperform the naïve benchmark. To this end, we consider a large34
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Figure 1. ID3-Price index ID3d,h (top) and day-ahead prices DAd,h (bottom) from 1.01.2015 to 30.04.2018.
The vertical dashed lines mark the beginning of the 852-day long out-of-sample test period.

set of past ID3 values, past DA prices and forward-looking fundamental variables, and utilize the least35

absolute shrinkage and selection operator (LASSO) [13] to eliminate regressors with low explanatory power,36

as well as apply forecast averaging [14]. By comparing performance of different model structures,37

we draw important conclusions regarding variable selection and provide recommendations for very38

short-term electricity price forecasting.39

The remainder of the paper is structured as follows. In Section 2, we introduce the dataset and40

discuss the use of variance stabilizing transformations (VSTs). Next, in Section 3 we describe the naïve41

approach proposed by Narajewski and Ziel [1] and introduce the model structures used in our study.42

In Section 4, we compare the predictive performance in terms of two commonly used error measures43

and the Giacomini and White [15] test for conditional predictive ability. Finally, in Section 5, we wrap44

up the results and conclude.45

2. The Dataset46

2.1. The ID3-Price Index and DA Prices47

The ID3-Price index takes into account only the most recent trades, i.e., transactions that took place48

no earlier than 3 hours before delivery. EPEX SPOT SE publishes the index, however, the currently49

covered period is too short for a comprehensive evaluation of the forecasts. Therefore, following50

Narajewski and Ziel [1] and Uniejewski et al. [10], we use an ID3-like time-series reconstructed from51

the individual transactions and denote it by ID3d,h, where d is the day and h is the hour of delivery,52

see the top panel in Figure 1. In addition to past ID3 values, we also use prices from the German53

day-ahead (DA) market, see the bottom panel in Figure 1. Recall, that the DA prices are set around54

noon on day d− 1 for all 24 hours of day d; we denote them by DAd,h.55

Both time series are of hourly resolution and span 1216 days ranging from 1.01.2015 to 30.04.2018.56

Like the majority of electricity price forecasting studies, we consider a rolling window scheme. Initially,57
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Figure 2. Three forward-looking fundamental time-series: system-wide load forecasts (top), wind
generation forecasts (middle) and solar generation forecasts (bottom) for the period from 1.01.2015 to
30.04.2018. All three are published on day d− 1 and concern the 24 hours of day d. As in Figure 1, the
vertical dashed lines mark the beginning of the 852-day long out-of-sample test period.

we fit our models to data from 1.01.2015 hour 1 to 30.12.2015 hour 24 (i.e., we use a 364-day window)58

and compute the price forecasts for the first hour of 31.12.2015. Next, the window is rolled forward by59

1 hour and the predictions for the second hour of 31.12.2015 are generated. This procedure is repeated60

until forecasts for the last hour in the 852-day long out-of-sample test period (i.e., 30.04.2018 hour 24)61

are made.62

2.2. Exogenous Variables63

The set of exogenous variables considered in this study includes three pairs of time-series that64

describe the demand-supply relationship in Germany:65

• the system-wide load Xd,h
1 and its day-ahead forecast X̂d,h

1 ,66

• the total wind power generation (WPG; off- and on-shore) Xd,h
2 and its day-ahead forecast X̂d,h

2 ,67

• and the total photovoltaic generation (PVG) Xd,h
3 and its day-ahead forecast X̂d,h

3 ,68

where d is the target day and h is the hour. The day-ahead forecasts X̂d,h
i are plotted in Figure 2; the69

corresponding actual values Xd,h
i of the fundamental variables are indistinguishable from them at70

this resolution. Naturally, the latter are known ex-post, hence only their lagged values can be used for71

forecasting. As discussed in Section 3, we utilize them by constructing a series of forecast errors, i.e.,72

X̂d,h
i − Xd,h

i , for the time moments for which the actual values are available; we assume that Xd,h
i is73

known immediately after its hourly period ends, i.e., at (d, h + 1). Although an assumption, advances74
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in on-line data collection significantly reduce the latency from the data source to the data provider, to75

the extent that in the near future this may become reality.76

As Goodarzi et al. [3] argue, wind and photovoltaic generation forecasting errors increase the77

absolute levels of system imbalance in Germany and these in turn influence electricity prices. Hence,78

we additionally use a set of balancing volumes Bd,h−5
i for the three (i = 1, 2, 3) quarter-hourly periods79

directly preceding the time at which the forecast is made, i.e., the period spans the first 45 minutes80

of the hour preceding the moment of computing the forecast. As in Narajewski and Ziel [1], Bd,h
i is81

defined as the sum of imbalances of all German Transmission System Operators for day d and hour h;82

this data is published every quarter-hour, 15 minutes after the end of the delivery.83

2.3. Variance Stabilizing Transformation84

Following the recommendations put forward by Uniejewski et al. [16], we use the so-called85

Variance Stabilizing Transformation (VST) to reduce the impact of extreme observations present in86

demand, generation and particularly in electricity price data. Before applying the VST, each variable87

is standardized by subtracting the sample median and dividing by the sample Median Absolute88

Deviation (MAD) or by the sample standard deviation if MAD = 0, corrected by the 75th percentile of89

the standard normal distribution z0.75:90

ξ = z0.75
ψ−Median(ψ)

MAD(ψ)
, (1)

where ψ is the in-sample vector of a given variable, ψ is a single element of ψ and ξ its standardized91

value. Then, we use a well performing VST – the area hyperbolic sine (asinh) – on ξ. However, unlike92

earlier studies, we apply the VST to each variable separately due to a large number of zero-valued93

observations in the PVG series:94

φ = asinh(ξ) = log
(

ξ +
√

ξ2 + 1
)

, (2)

where φ is the VST-transformed value of ψ.95

The back-transformation is more tricky. Uniejewski et al. [16] simply set:96

ψ =
MAD(ψ)

z0.75
sinh(φ) + Median(ψ). (3)

However, Narajewski and Ziel [1] argue that the latter is not correct since in most cases E sinh(X) 6=97

sinh(EX). As a remedy, they propose to use the following, mathematically correct back-transformation:98

ψ =
MAD(ψ)

z0.75D

D

∑
i=1

sinh(φ + εi) + Median(ψ), (4)

where εi are in-sample residuals of the model and D is the size of the calibration window. In this study99

we compare model performance for both back-transformations.100

3. The Models101

3.1. The Naïve Benchmark102

Recall, that Narajewski and Ziel [1] conclude their empirical study of intraday hourly products by103

stating that the market is weak-form efficient, i.e., that the best predictor is the most recent transaction104

price. Since we want to challenge this conjecture, as our benchmark we define:105

naïved,h ≡ 4IDd,h
0.25, (5)
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Figure 3. Illustration of the forecasting framework using actual transaction data for the period from
26.04.2018 16:00 to 27.04.2018 24:00. The black step function indicates the time the delivery starts (every
hour of Friday, 27.04.2018), the circles refer to actual trades (circle size represents the traded volume –
from 0.1 to 300 MWh, color represents the price – see the colorbar on the right) and the red step function
represents the time the forecasts are made. For instance, at 12:00 on 27.04.2018 when forecasting the
price for 16:00 (−→), the most recent ID3 value is for 12:00 (∗). The grey-shaded area indicates the data
used for computing the seven partial ID3 indices utilized when forecasting the price for hour 16, see
Section 3.2.3 for details.

where xIDd,h
y denotes the volume-weighted price of transactions that took place in the intraday (ID)106

market in a y-hour window that ended x hours before delivery on day d and hour h, see Eqn. (2) in [1].107

Using this notation the ID3-Price index can be defined as ID3d,h ≡ 0IDd,h
3 , i.e., the volume-weighted108

price of transactions that took place in the last three hours of trading (excluding the last 5 or 30 minutes,109

see Section 2).110

Note, that our naïve benchmark is not identical to the one used in [1], i.e., Naive.MR1 ≡ 3.25IDd,h
0.25.111

Instead of assuming that the trader makes the decision and places orders in a 15-minute window112

ending 3 hours before delivery, we give her a one hour window for making the trading decisions113

(between 4 and 3 hours before delivery). This is illustrated in Figure 3, where the red step function114

represents the time the forecasts are made (4 hours before delivery) and the black step function the115

time the delivery starts.116

3.2. LASSO-estimated Models117

An advantage of using automated variable selection is an almost unlimited number of initially118

considered explanatory variables [17]. In this study, we define a baseline model with 76 potential119

regressors and its three extensions; the largest one takes into account 200+ explanatory variables. All120

considered models are estimated in a multivariate modeling framework in the sense of Ziel and Weron121

[18], i.e., an explicit ‘day × hour’ matrix-like structure is used for the 24-dimensional price vectors.122

However, unlike when forecasting in day-ahead auction markets, where the prices are set once a day,123
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in a continuous-time intraday market we are able to use information updated in the course of the day,124

e.g., more recent weather forecasts.125

3.2.1. The Baseline Model126

The baseline model is a slightly modified LASSO-estimated model of Uniejewski et al. [10]. The127

only difference is the omission of some of the less important variables. Namely, we exclude the128

information about inputs distant in time and only use the latest information about past ID3 and DA129

prices. As a result, we obtain a model with 76 potential regressors – 21 last known ID3-Price index130

values from the intraday market (i.e., nearly the whole day), 24 DA prices for the target day and seven131

dummy variables (to account for the weekly seasonality). Given the 4-hour forecast to delivery lag132

and the time the DA prices are published, we can additionally include next day’s DA prices when133

forecasting hours 16 to 24:134

ID3d,h =
24

∑
i=4

βi−3ID3d,h−i

︸ ︷︷ ︸
past intraday prices

+
24

∑
i=1

β21+iDAd,i

︸ ︷︷ ︸
DA prices for day d

+
7

∑
i=1

β45+iDi︸ ︷︷ ︸
weekday dummies

+1h≥16

24

∑
i=1

β52+iDAd+1,i

︸ ︷︷ ︸
DA prices for day d + 1

+ εd,h, (6)

where εd,h is the noise term. To simplify the notation when referring to an hourly product with delivery135

i hours after (i > 0) or before (i < 0) the product with delivery on day d and hour h (more precisely:136

with delivery between hour h− 1 and h) we define:137

(d, h + i) ≡
(

d +

⌊
h + i− 1

24

⌋
, h + i− 24

⌊
h + i− 1

24

⌋)
. (7)

For instance, for h = 2 and i = −5 we have (d,−3) ≡ (d− 1, 21), while for h = 2 and i = −2 we have138

(d, 0) ≡ (d− 1, 24). Note, that the price for each hour is predicted 4 hours in advance, hence the first139

sum in the above formula starts with i = 4, and using the most recent information available, see Figure140

3. Later in the text we denote model (6) by baseline.141

3.2.2. The Model with Exogenous Variables142

The first extension of model (6) is motivated by the results of Uniejewski et al. [19], who showed143

that fundamental variables play an important role when forecasting DA prices. On the other hand,144

Monteiro et al. [20] and Andrade et al. [21] argued that fundamentals (historical and predicted demand,145

generation and weather) did not have much explanatory power when forecasting Spanish intraday146

prices, since DA prices already included this information. To check whether fundamentals can help147

in forecasting the ID3-Price index in the German intraday market, we extend the baseline model to148

include load, wind power generation (WPG) and photovoltaic generation (PVG) forecasts and the149

corresponding errors, as well as the balancing volumes (Section 2.2 for details):150

ID3d,h =
24

∑
i=4

βi−3ID3d,h−i +
24

∑
i=1

β21+iDAd,i +
7

∑
i=1

β45+iDi + 1h≥16

24

∑
i=1

β52+iDAd+1,i+

+
24

∑
i=1

β76+iX̂
d,i
1︸ ︷︷ ︸

load forecasts

+
24

∑
i=1

β100+iX̂
d,i
2︸ ︷︷ ︸

WPG forecasts

+
24

∑
i=1

β124+iX̂
d,i
3︸ ︷︷ ︸

PVG forecasts

+
24

∑
i=4

β148+i

(
X̂d,h−i

1 − Xd,h−i
1

)
︸ ︷︷ ︸

errors of load forecasts

+

+
24

∑
i=4

β169+i

(
X̂d,h−i

2 − Xd,h−i
2

)
︸ ︷︷ ︸

errors of WPG forecasts

+
24

∑
i=4

β190+i

(
X̂d,h−i

3 − Xd,h−i
3

)
︸ ︷︷ ︸

errors of PVG forecasts

+
3

∑
i=1

β211+iB
d,h−5
i︸ ︷︷ ︸

balancing volumes

+εd,h. (8)

Later in the text we denote this model by w/exogenous.151
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3.2.3. The Model with Partial ID Prices152

The second extension of model (6) is motivated by the results of Narajewski and Ziel [1]. The153

authors emphasize that the most important information for forecasting ID3 can be derived from recent154

transaction data for a given product. Hence, we extend the baseline model to include 8 additional155

predictors. Firstly, we add the naïve benchmark (5) as one of the explanatory variables. Secondly,156

we add variables that link the intraday to day-ahead markets and reflect changes in the expectations157

about price levels over time. More precisely, we construct artificial series that utilize the information158

from recent transaction data on the neighboring products. For i = −4, ..., 2, we define seven partial ID159

indexes:160

pIDd,h
i ≡

1

∑τ∈[(d,h−5),(d,h−4)] Vd,h+i
τ

∑
τ∈[(d,h−5),(d,h−4)]

Vd,h+i
τ Pd,h+i

τ , (9)

where Vd,h
τ and Pd,h

τ are respectively the volume and price of a transaction made at time τ on a product161

with delivery on day d and hour h. Hence, pIDd,h
i is a volume-weighted price of all transactions on162

product (d, h + i) in the last hour before the forecast is computed, i.e., between 5 and 4 hours before the163

delivery. For example, to compute pIDd,16
i , we use seven hourly windows corresponding to i = −4, ..., 2,164

see the gray-shaded rectangle spanning 7 hourly products in Figure 3. Note, that using the xIDd,h
y165

notation we can write:166

pIDd,h
i ≡ 4+iID

d,h+i
1 . (10)

Finally, we can define the model with partial ID prices as follows (later in the text we denote it by167

w/partial ID):168

ID3d,h =
24

∑
i=4

βi−3ID3d,h−i +
24

∑
i=1

β21+iDAd,i +
7

∑
i=1

β45+iDi + 1h≥16

24

∑
i=1

β52+iDAd+1,i+

+
2

∑
i=−4

β81+i

(
DAd,h+i − pIDd,h

i

)
︸ ︷︷ ︸

difference between DA and partial ID prices

+ β84 naïved,h︸ ︷︷ ︸
naïve benchmark

+ εd,h. (11)

3.2.4. The Full Model169

Now, we are ready to write the full model (denoted later in the text by full), which includes all170

elements of models (8) and (11). We end up with a maximum of 222 potential regressors, depending171

on whether we already know the day-ahead prices for day d + 1:172

ID3d,h =
24

∑
i=4

βi−3ID3d,h−i +
24

∑
i=1

β21+iDAd,i +
7

∑
i=1

β45+iDi + 1h≥16

24

∑
i=1

β52+iDAd+1,i+

+
24

∑
i=1

β76+iX̂
d,i
1 +

24

∑
i=1

β100+iX̂
d,i
2 +

24

∑
i=1

β124+iX̂
d,i
3 +

24

∑
i=4

β148+i

(
X̂d,h−i

1 − Xd,h−i
1

)
+

+
24

∑
i=4

β169+i

(
X̂d,h−i

2 − Xd,h−i
2

)
+

24

∑
i=4

β190+i

(
X̂d,h−i

3 − Xd,h−i
3

)
+

3

∑
i=1

β211+iB
d,h−5
i +

+
2

∑
i=−4

β219+i

(
DAd,h+i − pIDd,h

i

)
+ β222 naïved,h + εd,h (12)
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The final modification of the benchmark model is obtained by fixing β222 ≡ 1, as considered in [1].173

Later in the text we denote such a model by full-diff, because it corresponds to setting the dependent174

variable to the difference between ID3 and the naïve benchmark, instead of the ID3-Price index itself.175

3.3. LASSO Estimation176

In order to explain the estimation scheme, let us use a more compact form of the regression model:177

Xd,h =
n

∑
i=1

βiV
d,h
i , (13)

where Vd,h
i ’s are the predictors and βi’s are the corresponding coefficients. The least absolute178

shrinkage and selection operator (LASSO) shrinks the coefficients of the less important explanatory179

variables towards zero and hence performs variable selection [13,22]. The LASSO can be treated as a180

generalization of linear regression, where instead of minimizing only the residual sum of squares (RSS),181

the sum of RSS and a linear penalty function of the β’s is minimized:182

β̂L = min
β
{RSS + λ ‖β‖1} = min

β

{
RSS + λ

n

∑
i=1
|βi|
}

, (14)

where λ ≥ 0 is a tuning (or regularization) parameter. Note that for λ = 0, we get the standard least183

squares estimator, for λ→ ∞, all βi’s tend to zero, while for intermediate values of λ, there is a balance184

between minimizing the RSS and shrinking the coefficients.185

Selecting a ‘good’ value for λ is critical. It is, however, a complex problem [8,11,17]. Because of a186

relatively short dataset, we are not able to reselect λ based on model performance in a validation period.187

Instead, we have decided to use cross-validation. It can be effectively applied to select the tuning188

parameter ex-ante, unfortunately at a cost of increased computational complexity. The procedure is189

discussed in more detail in Section 5.2.190

3.4. Forecast Averaging191

Combining forecasts in order to obtain more precise and robust predictions is a technique known192

both in the electricity price forecasting literature [14] and in forecasting in general [23]. Here, we use193

an arithmetic average of two predictions – obtained from the LASSO-estimated model (labeled Z) and194

the naïve forecast:195

ens(Z) =
1
2

ÎD3
d,h
Z +

1
2

naïved,h. (15)

The motivation for using the arithmetic mean is twofold. Firstly, it is the simplest averaging scheme,196

requiring no additional calibration. Secondly, it is hard to beat by ‘more sophisticated’ approaches [24].197

198

4. Results199

4.1. Forecast Evaluation200

The forecasting accuracy is assessed in terms of two error measures: the Mean Absolute Error201

(MAE) and the Root Mean Squared Error (RMSE). The scores are reported for the full out-of-sample test202

period of D = 852 days, i.e., 31.12.2015 to 30.04.2018, see Figure 1, jointly for all hours of the day:203

MAE =
1

24D

D

∑
d=1

24

∑
h=1

∣∣∣E d,h
Z

∣∣∣ and RMSE =

√√√√ 1
24D

D

∑
d=1

24

∑
h=1

∣∣∣E d,h
Z

∣∣∣2, (16)
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Table 1. MAE and RMSE errors for all 852 days of the out-of-sample test period, see Figure 1. The upper
part of the table reports on the results obtained for models which use back-transformation (4), while
the lower that use back-transformation (3). Columns labeled Model refer to the models themselves,
while those labeled ens(Model) to ensembles with the naïve benchmark, as defined in Eqn. (15). Errors
smaller than those of the naïve benchmark are emphasized in bold.

Back- Model MAE RMSE
transformation class Model ens(Model) Model ens(Model)

naïve 3.774 — 5.999 —

With correction
proposed in [1],
see Eqn. (4)

baseline 4.433 3.866 7.178 6.246
w/exogenous 4.234 3.720 6.956 6.040
w/partial ID 3.771 3.702 6.052 5.903
full 3.710 3.630 6.072 5.841
full-diff 3.723 3.700 5.900 5.906

As originally
introduced in [16],
see Eqn. (3)

baseline 4.427 3.868 7.294 6.285
w/exogenous 4.242 3.724 7.069 6.086
w/partial ID 3.807 3.708 6.182 5.942
full 3.733 3.635 6.178 5.877
full-diff 3.699 3.710 5.894 5.923

where E d,h
Z = ID3d,h − ÎD3

d,h
is the prediction error for model Z, for day d and hour h. Recall, that the204

RMSE is the optimal measure for least square problems, whereas the MAE is more robust to outliers205

[22]. The resulting aggregate MAE and RMSE scores can be used to provide a ranking of the models,206

but do not allow to draw statistically significant conclusions on the relative performance. Therefore,207

we use the Giacomini and White [15] test for conditional predictive ability (CPA), which can be regarded208

as a generalization of the commonly used Diebold-Mariano test for unconditional predictive ability [2].209

First, for each pair of models, we compute the so-called multivariate loss differential series [16,18]:210

∆d
A,B = ‖Ê d

A‖p − ‖Ê d
B‖p, (17)

where ‖Ed
Z‖p = (∑24

h=1 |Ed,h
Z |p)1/p is the p-th norm of the 24-dimensional vector of out-of-sample errors211

for model Z. Then, we calculate the p-values of the CPA test with null H0 : α = 0 in the regression:212

∆d
A,B = α′Xd−1 + εd, where Xd−1 contains information for day d− 1, i.e., a constant and lags of ∆d

A,B.213

4.2. MAE and RMSE Errors214

In Table 1 we report the MAE and RMSE metrics for all considered models and their ensembles215

with the naïve benchmark, as defined in Eqn. (15). In Figure 4 we additionally visualize the set of216

results corresponding to back-transformation (4), reflecting the upper part of Table 1. Several important217

conclusions can be drawn:218

• In terms of the MAE, three models outperform the naïve benchmark even without averaging219

forecasts. However, only the full-diff approach manages to beat the benchmark in terms of the220

RMSE, see the values emphasized in bold in Table 1 in columns labeled Model.221

• All baseline model extensions yield lower errors than the baseline model itself, both in terms of222

the MAE and RMSE.223

• The full model outperforms the model with partial ID prices, which suggests that using the224

exogenous variables discussed in Section 2.2 improves forecast accuracy.225

• On average, back-transformation (4) proposed by Narajewski and Ziel [1] (the upper part of Table226

1) performs slightly better than the originally introduced one (the lower part of Table 1). For this227

reason, in what follows we only discuss the results of back-transformation (4).228

• Apart from the full-diff model, every other model performs better when its forecasts are averaged229

using Eqn. (15). Compare the columns labeled Model and ens(Model) in Table 1.230
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Figure 4. Bar plots illustrating the MAE (top) and RMSE (bottom) errors reported in the upper part
of Table 1, i.e., for the naïve benchmark and models that utilize back-transformation (4). The brown
dashed lines correspond to the benchmark, the solid bars represent the individual models and the
dotted bars the corresponding ensembles.

• The improvements from averaging forecasts are much higher (ca. 12-14%) for models that do not231

use the naïve benchmark as a regressor. However, what is surprising, the gains are noticeable (ca.232

2-4%) even for models which include this explanatory variable. Apparently, the LASSO scheme233

does not put enough weight to this variable. Setting β222 = 0 in the full-diff model helps, but234

does not solve the problem completely. We return to this issue in Section 4.4.235

4.3. Conditional Predictive Ability236

We perform the Giacomini and White [15] test of conditional predictive ability (CPA) to check237

whether the differences in forecasting accuracy are statistically significant. We conduct the test only for238

the naïve benchmark and models that utilize back-transformation (4). The p-values of the pairwise239

comparisons are visualized in Figure 5. We can see that:240

• Naïve forecasts can be significantly outperformed by predictions of models that include partial ID241

information and exogenous variables (full and full-diff models) without averaging, and by most242

of models after ensembling.243

• Forecasts of the baseline model are significantly outperformed by those of any other244

LASSO-estimated model.245

• For all considered models, ensembling significantly improves the accuracy in terms of the linear246

errors.247
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Figure 5. Results of the conditional predictive ability (CPA) test of Giacomini and White [15] for the
linear (left) and quadratic (right) errors. We use a heat map to indicate the range of the p-values – the
closer they are to zero (→ dark green) the more significant is the difference between the forecasts of a
model on the X-axis (better) and the forecasts of a model on the Y-axis (worse).

• Forecasts of the ens(full) model significantly outperform those of any other model, both in terms248

of the linear and quadratic errors.249

4.4. Why Does Ensembling Improve the Results?250

As the above reported results indicate, the ensemble is in most cases able to outperform both251

individual forecasts. However, the simple averaging scheme proposed in Eqn. (15) might not be the252

optimal for this task. Hence, in this Section we consider a more general formula:253

ens(Z) = (1− w) · ÎD3
d,h
Z + w · naïved,h, (18)

where w is the weight assigned to the naïve forecast. In Figure 6 we depict the MAE of ensemble (18)254

as a function of w for the full model with back-transformation (4). The MAE curve is convex with a255

0 20 40 60 80 100

Näıve forecast weight [%]

3.625

3.650

3.675

3.700

3.725

3.750

3.775

M
A
E

Figure 6. The MAE errors of ensembles created using Eqn. (18) that utilize the full model with
back-transformation (4), as a function of the weight assigned to the naïve benchmark.
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Table 2. The MAE errors in three price regimes (from top to bottom): the highest 2.5%, the middle 50%
and the lowest 2.5% observations in the out-of-sample test period. The LASSO model used is the full
model with back-transformation (4).

Regime Full model Naïve benchmark Ensemble
High 12.418 11.938 12.025
Middle 2.675 2.795 2.631
Low 13.957 12.352 12.859

minimum at ca. w = 45%. However, the value for w = 50%, i.e., the simple mean used in the study, is256

very close to the optimum.257

The reason behind this shape is the characteristic of LASSO forecasts, estimated on long calibration258

windows. Specifically, the model is trained to generalize well, and such a behavior is reinforced by the259

fact that there are only a few spikes in the calibration window. As such, the model is able to better260

predict prices at the typically observed levels at the cost of underestimating spikes (both positive and261

negative), see Table 2. Therefore the ensemble (regardless of the weights) balances the generalization262

of the LASSO forecasts with the ability to quickly adapt to non-recurring phenomena of the naïve263

benchmark.264

5. Discussion and Conclusions265

The motivation for this study was a claim made by Narajewski and Ziel [1], that the German266

intraday, continuous-time market for hourly products was weak-form efficient, i.e., that the best267

predictor for the ID3-Price index was the most recent transaction price. Performing a comprehensive268

forecasting exercise involving parameter-rich regression-type models with four types of fundamental269

variables as inputs, we have been able to challenge their claim and show that we can significantly270

outperform the naïve forecast by combining it with a prediction of a LASSO-estimated model. To keep271

the empirical part of the paper concise, we have opted for omitting some of the considerations. Let us272

now briefly discuss them.273

5.1. The Moment of Forecasting the ID3-Price Index274

After consulting with practitioners, we have decided to focus on a forecasting scheme used by275

Uniejewski et al. [10], where the predictions are made four hours before delivery. This means, that a276

trader has an hour to make the decisions and build a long or short position before the ID3 transaction277

window opens three hours before delivery. However, to check whether also the Naive.MR1 ≡ 3.25IDd,h
0.25278

benchmark of Narajewski and Ziel [1] can be outperformed, we have recalculated our models in their279

setting. Naturally, the Naive.MR1 is harder to beat than our naïve model, because it uses more recent280

transaction data. Yet, the relative performance vs. the benchmark was qualitatively the same as281

reported in Section 4.282

5.2. Selecting the LASSO Regularization Parameter283

For the choice of the regularization parameter, we have resorted to using an automated cross284

validation (CV) technique. More precisely, the applied CV procedure consisted of three folds with a285

dense logarithmic grid of 50 λ values spanning six orders of magnitude. Two thirds of the calibration286

sample was used for training the models estimated with different λ’s, the remaining one third for287

testing them. This resulted in a significantly increased computational burden, due to the need of testing288

multiple models for multiple λ’s, but also allowed for an ex-ante choice of the regularization parameter.289

We have also performed a limited numerical experiment to compare with the results obtained for the290

best ex-post selected λ. As it turned out, the difference in the MAE and RMSE errors was less than 0.5%.291
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5.3. The Impact of Intraday Updates of the Fundamentals292

We have also tried to assess the impact of using more recent forecasts of the system-wide load,293

wind power generation, photovoltaic generation and balancing volumes. We have measured the294

predictive performance of our models under the assumption that we know future values of the295

exogenous variables until the end of the target day. With such ‘perfect forecasts’ we have been able296

to additionally reduce the forecasting error by more than 2%. This result emphasizes how important297

in short-term forecasting is the availability of more frequently updated forecasts of the exogenous298

variables.299

5.4. Model Size300

As mentioned above, the LASSO procedure allows for an efficient estimation of parameter-rich301

models. However, the quality of the obtained estimates can differ for different sizes of the regression302

model. Having only ca. 360 observations in the calibration window, we may obtain worse forecasts if303

we consider dozens or hundreds of redundant variables in the model. The full model defined by Eqn.304

(12) includes only ca. 200 potential predictors. Interestingly it outperforms by ca. 0.6% a richer model305

with more than 800 variables (the same information sources, but more past observations). Therefore306

we advise to use expert knowledge and/or back-testing to eliminate non-informative predictors before307

running the LASSO.308

5.5. Directions for Future Research309

Given that the literature on forecasting prices in European intraday power markets is still very310

scarce, our study is a step forward towards understanding the impact of using recent transaction311

data and exogenous variables on the predictive performance. Our study can be further expanded312

in several directions. In particular, we report the results for only one VST (for more suggestions see313

[16]) and without decomposing the data into a long-term seasonal component and the remaining314

stochastic part (for the importance of doing this see, e.g., [25,26]). Furthermore, we have focused on315

point forecasting, ignoring the full predictive distribution [7,27] or – what may be even more important316

in continuous-time intraday markets – the trajectories [12,28]. We have restricted ourselves to using317

regression-based models, however, machine learning techniques could be used in this context as well318

[11,20,21,29], naturally at the cost of an increased computational burden. Finally, recall from Section319

4.4, that the ensemble we use balances the generalization of the LASSO forecasts with the ability to320

quickly adapt to non-recurring phenomena of the naïve benchmark. A potentially viable alternative321

would be to use the approach introduced by Hubicka et al. [30], which averages forecasts of a given322

model across calibration windows of different length.323
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