

Beating the naive: Combining LASSO with naive intraday electricity price forecasts

Grzegorz Marcjasz¹
Bartosz Uniejewski¹
Rafał Weron¹

¹ Department of Operations Research and Business Intelligence,
Wrocław University of Science and Technology, Poland

Article

Beating the Naïve: Combining LASSO with Naïve Intraday Electricity Price Forecasts

Grzegorz Marcjasz ¹, Bartosz Uniejewski ¹ and Rafał Weron ^{1,*}

¹ Department of Operations Research and Business Intelligence, Wrocław University of Science and Technology, 50-370 Wrocław, Poland

* Correspondence: rafal.weron@pwr.edu.pl; Tel.: +48-71-320-4525

Version February 2, 2020 submitted to Energies

Abstract: A recent electricity price forecasting study claims that the German intraday, continuous-time market for hourly products is weak-form efficient, i.e., that the best predictor for the so-called ID3-Price index is the most recent transaction price. Here, we undermine this claim and show that we can beat the naïve forecast by combining it with a prediction of a parameter-rich model estimated using the least absolute shrinkage and selection operator (LASSO). We further argue, that that if augmented with timely predictions of fundamental variables for the coming hours, the LASSO-estimated model itself can significantly outperform the naïve forecast.

Keywords: Intraday electricity market; ID3-Price index; Price forecasting; Variable selection; Fundamental variables; LASSO; Averaging forecasts

1. Introduction

After performing a comprehensive empirical study on intraday electricity price forecasting and considering models with tens of thousands of regressors, Narajewski and Ziel [1] conclude that the German continuous-time market for hourly products is weak-form efficient, i.e., that the best predictor is the most recent transaction price. Their result is surprising and at the same time disappointing from a research perspective. Here, we undermine their claim and show that it is possible to build models that significantly outperform the naïve benchmark. Consequently, we invalidate the conjecture that the German intraday market for hourly products is weak-form efficient.

This paper belongs to a new strand of literature on forecasting prices in intraday electricity markets. To date, the workhorse of power trading in Europe has been the uniform price auction, and a vast majority of research and applications have concerned *day-ahead* (DA) electricity prices [2]. However, the rapid expansion and integration of renewable energy sources (most notably wind and solar), active demand side management (smart meters, smart appliances, etc.) and the introduction of the XBID pan-European trading platform have shifted the focus to intraday markets [3,4]. One of the more liquid – and hence more studied – marketplaces, is the German intraday market for quarter-hourly and hourly products [5–11]. In this continuous-time market, the majority of trading takes place in the last couple of hours before gate closure [12] and on the hourly products [1]; the latter are traded from 15:00 on day $d - 1$ until 5 minutes before the delivery starts on day d , or 30 minutes before if the trade is made between the delivery zones. The leading reference price is the so-called *ID3-Price index* (or simply ID3), which is also an underlying instrument of exchange-traded derivative products (see www.eex.com). The index is computed as the volume-weighted average price of all trades on the quarter-hourly and hourly products in the three hour window directly preceding the delivery (see www.epexspot.com).

In this article, we focus on predicting the ID3-Price index a few hours-ahead and develop regression type models that outperform the naïve benchmark. To this end, we consider a large

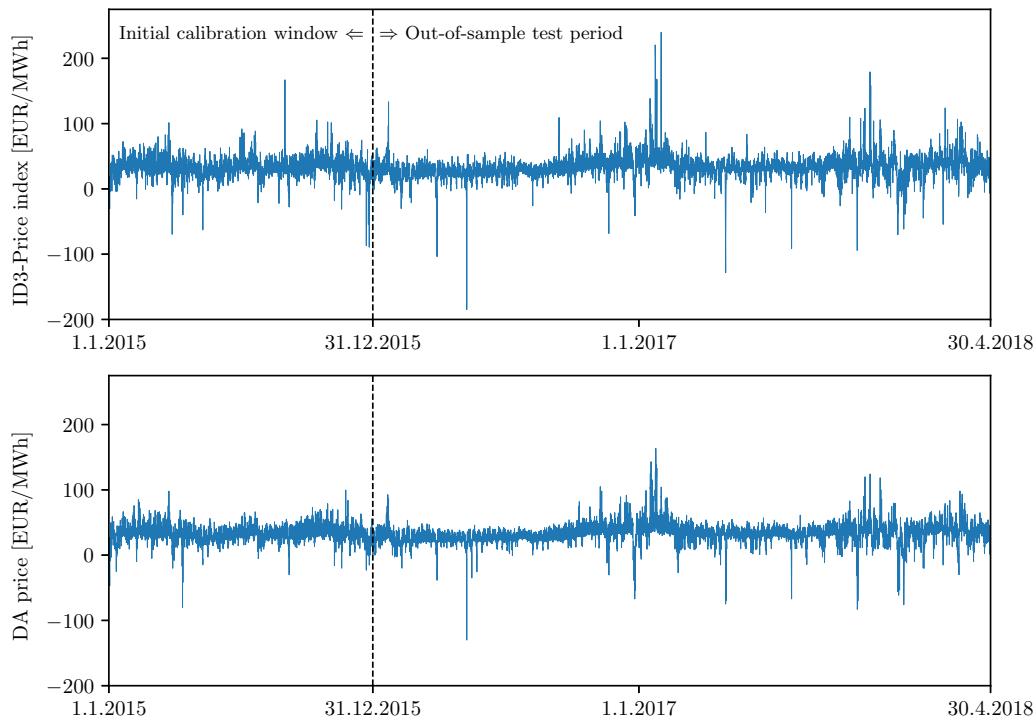


Figure 1. ID3-Price index $ID3^{d,h}$ (top) and day-ahead prices $DA^{d,h}$ (bottom) from 1.01.2015 to 30.04.2018. The vertical dashed lines mark the beginning of the 852-day long out-of-sample test period.

35 set of past ID3 values, past DA prices and forward-looking fundamental variables, and utilize the *least*
 36 *absolute shrinkage and selection operator* (LASSO) [13] to eliminate regressors with low explanatory power,
 37 as well as apply forecast averaging [14]. By comparing performance of different model structures,
 38 we draw important conclusions regarding variable selection and provide recommendations for very
 39 short-term electricity price forecasting.

40 The remainder of the paper is structured as follows. In Section 2, we introduce the dataset and
 41 discuss the use of variance stabilizing transformations (VSTs). Next, in Section 3 we describe the naïve
 42 approach proposed by Narajewski and Ziel [1] and introduce the model structures used in our study.
 43 In Section 4, we compare the predictive performance in terms of two commonly used error measures
 44 and the Giacomini and White [15] test for conditional predictive ability. Finally, in Section 5, we wrap
 45 up the results and conclude.

46 2. The Dataset

47 2.1. The ID3-Price Index and DA Prices

48 The ID3-Price index takes into account only the most recent trades, i.e., transactions that took place
 49 no earlier than 3 hours before delivery. EPEX SPOT SE publishes the index, however, the currently
 50 covered period is too short for a comprehensive evaluation of the forecasts. Therefore, following
 51 Narajewski and Ziel [1] and Uniejewski *et al.* [10], we use an ID3-like time-series reconstructed from
 52 the individual transactions and denote it by $ID3^{d,h}$, where d is the day and h is the hour of delivery,
 53 see the top panel in Figure 1. In addition to past ID3 values, we also use prices from the German
 54 day-ahead (DA) market, see the bottom panel in Figure 1. Recall, that the DA prices are set around
 55 noon on day $d - 1$ for all 24 hours of day d ; we denote them by $DA^{d,h}$.

56 Both time series are of hourly resolution and span 1216 days ranging from 1.01.2015 to 30.04.2018.
 57 Like the majority of electricity price forecasting studies, we consider a rolling window scheme. Initially,

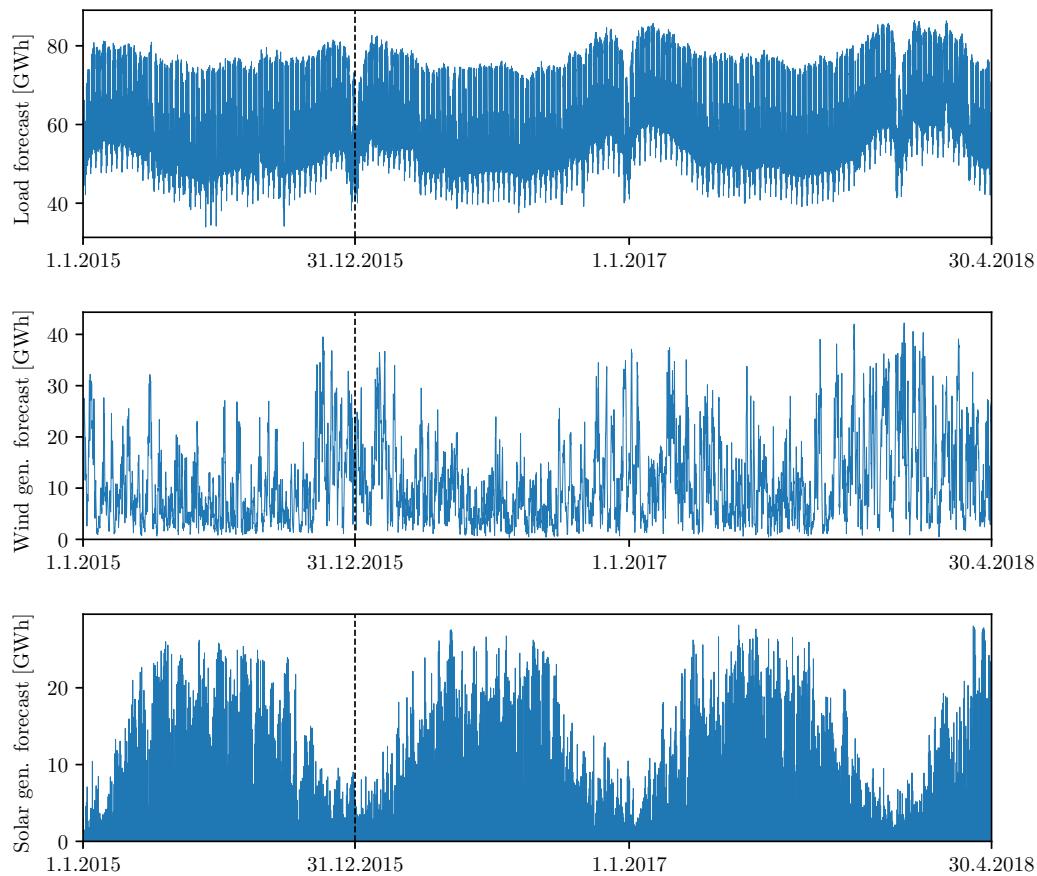


Figure 2. Three forward-looking fundamental time-series: system-wide load forecasts (top), wind generation forecasts (middle) and solar generation forecasts (bottom) for the period from 1.01.2015 to 30.04.2018. All three are published on day $d - 1$ and concern the 24 hours of day d . As in Figure 1, the vertical dashed lines mark the beginning of the 852-day long out-of-sample test period.

58 we fit our models to data from 1.01.2015 hour 1 to 30.12.2015 hour 24 (i.e., we use a 364-day window)
 59 and compute the price forecasts for the first hour of 31.12.2015. Next, the window is rolled forward by
 60 1 hour and the predictions for the second hour of 31.12.2015 are generated. This procedure is repeated
 61 until forecasts for the last hour in the 852-day long out-of-sample test period (i.e., 30.04.2018 hour 24)
 62 are made.

63 *2.2. Exogenous Variables*

64 The set of exogenous variables considered in this study includes three pairs of time-series that
 65 describe the demand-supply relationship in Germany:

66 • the system-wide load $X_1^{d,h}$ and its day-ahead forecast $\hat{X}_1^{d,h}$,
 67 • the total wind power generation (WPG; off- and on-shore) $X_2^{d,h}$ and its day-ahead forecast $\hat{X}_2^{d,h}$,
 68 • and the total photovoltaic generation (PVG) $X_3^{d,h}$ and its day-ahead forecast $\hat{X}_3^{d,h}$,

69 where d is the target day and h is the hour. The day-ahead forecasts $\hat{X}_i^{d,h}$ are plotted in Figure 2; the
 70 corresponding actual values $X_i^{d,h}$ of the fundamental variables are indistinguishable from them at
 71 this resolution. Naturally, the latter are known *ex-post*, hence only their lagged values can be used for
 72 forecasting. As discussed in Section 3, we utilize them by constructing a series of forecast errors, i.e.,
 73 $\hat{X}_i^{d,h} - X_i^{d,h}$, for the time moments for which the actual values are available; we assume that $X_i^{d,h}$ is
 74 known immediately after its hourly period ends, i.e., at $(d, h + 1)$. Although an assumption, advances

75 in on-line data collection significantly reduce the latency from the data source to the data provider, to
 76 the extent that in the near future this may become reality.

77 As Goodarzi *et al.* [3] argue, wind and photovoltaic generation forecasting errors increase the
 78 absolute levels of system imbalance in Germany and these in turn influence electricity prices. Hence,
 79 we additionally use a set of balancing volumes $B_i^{d,h-5}$ for the three ($i = 1, 2, 3$) quarter-hourly periods
 80 directly preceding the time at which the forecast is made, i.e., the period spans the first 45 minutes
 81 of the hour preceding the moment of computing the forecast. As in Narajewski and Ziel [1], $B_i^{d,h}$ is
 82 defined as the sum of imbalances of all German Transmission System Operators for day d and hour h ;
 83 this data is published every quarter-hour, 15 minutes after the end of the delivery.

84 **2.3. Variance Stabilizing Transformation**

85 Following the recommendations put forward by Uniejewski *et al.* [16], we use the so-called
 86 Variance Stabilizing Transformation (VST) to reduce the impact of extreme observations present in
 87 demand, generation and particularly in electricity price data. Before applying the VST, each variable
 88 is standardized by subtracting the sample median and dividing by the sample Median Absolute
 89 Deviation (MAD) or by the sample standard deviation if $MAD = 0$, corrected by the 75th percentile of
 90 the standard normal distribution $z_{0.75}$:

$$\xi = z_{0.75} \frac{\psi - \text{Median}(\psi)}{\text{MAD}(\psi)}, \quad (1)$$

91 where ψ is the in-sample vector of a given variable, ψ is a single element of ψ and ξ its standardized
 92 value. Then, we use a well performing VST – the area hyperbolic sine (asinh) – on ξ . However, unlike
 93 earlier studies, we apply the VST to each variable separately due to a large number of zero-valued
 94 observations in the PVG series:

$$\phi = \text{asinh}(\xi) = \log \left(\xi + \sqrt{\xi^2 + 1} \right), \quad (2)$$

95 where ϕ is the VST-transformed value of ψ .

96 The back-transformation is more tricky. Uniejewski *et al.* [16] simply set:

$$\psi = \frac{\text{MAD}(\psi)}{z_{0.75}} \sinh(\phi) + \text{Median}(\psi). \quad (3)$$

97 However, Narajewski and Ziel [1] argue that the latter is not correct since in most cases $\mathbb{E} \sinh(X) \neq$
 98 $\sinh(\mathbb{E} X)$. As a remedy, they propose to use the following, mathematically correct back-transformation:

$$\psi = \frac{\text{MAD}(\psi)}{z_{0.75} D} \sum_{i=1}^D \sinh(\phi + \varepsilon_i) + \text{Median}(\psi), \quad (4)$$

99 where ε_i are in-sample residuals of the model and D is the size of the calibration window. In this study
 100 we compare model performance for both back-transformations.

101 **3. The Models**

102 **3.1. The Naïve Benchmark**

103 Recall, that Narajewski and Ziel [1] conclude their empirical study of intraday hourly products by
 104 stating that the market is weak-form efficient, i.e., that the best predictor is the most recent transaction
 105 price. Since we want to challenge this conjecture, as our benchmark we define:

$$\text{naïve}^{d,h} \equiv {}_4\text{ID}_{0.25}^{d,h}, \quad (5)$$

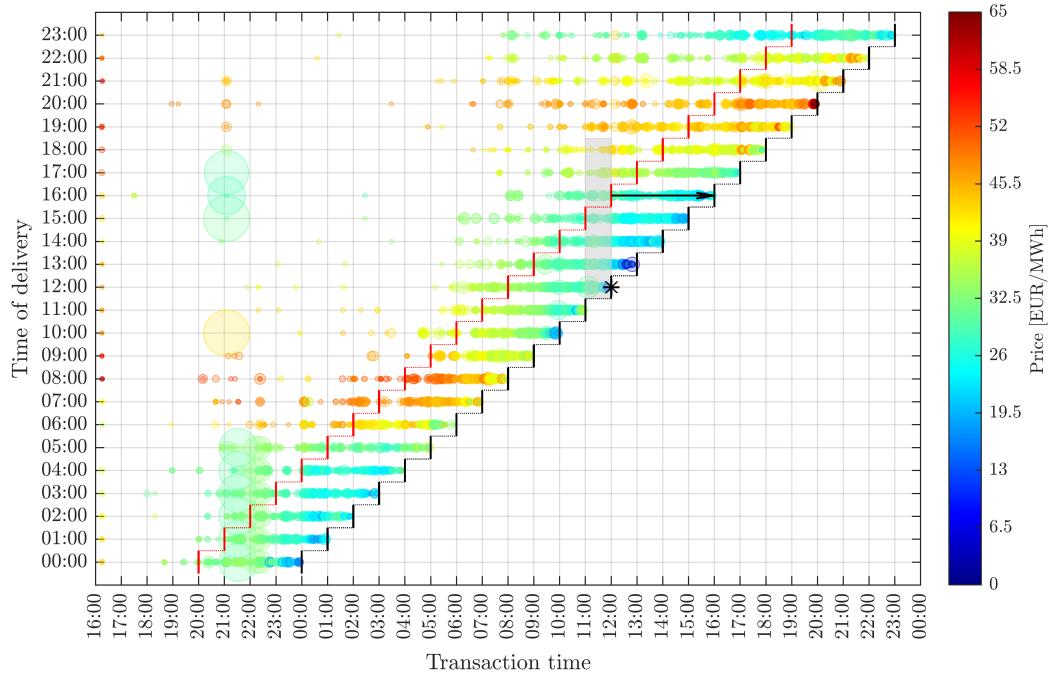


Figure 3. Illustration of the forecasting framework using actual transaction data for the period from 26.04.2018 16:00 to 27.04.2018 24:00. The black step function indicates the time the delivery starts (every hour of Friday, 27.04.2018), the circles refer to actual trades (circle size represents the traded volume – from 0.1 to 300 MWh, color represents the price – see the colorbar on the right) and the red step function represents the time the forecasts are made. For instance, at 12:00 on 27.04.2018 when forecasting the price for 16:00 (→), the most recent ID3 value is for 12:00 (*). The grey-shaded area indicates the data used for computing the seven partial ID3 indices utilized when forecasting the price for hour 16, see Section 3.2.3 for details.

106 where $xID_y^{d,h}$ denotes the volume-weighted price of transactions that took place in the intraday (ID)
 107 market in a y -hour window that ended x hours before delivery on day d and hour h , see Eqn. (2) in [1].
 108 Using this notation the ID3-Price index can be defined as $ID3^{d,h} \equiv {}_0ID_3^{d,h}$, i.e., the volume-weighted
 109 price of transactions that took place in the last three hours of trading (excluding the last 5 or 30 minutes,
 110 see Section 2).

111 Note, that our *naïve* benchmark is not identical to the one used in [1], i.e., $\text{Naive.MR1} \equiv {}_{3.25}ID_{0.25}^{d,h}$.
 112 Instead of assuming that the trader makes the decision and places orders in a 15-minute window
 113 ending 3 hours before delivery, we give her a one hour window for making the trading decisions
 114 (between 4 and 3 hours before delivery). This is illustrated in Figure 3, where the red step function
 115 represents the time the forecasts are made (4 hours before delivery) and the black step function the
 116 time the delivery starts.

117 3.2. LASSO-estimated Models

118 An advantage of using automated variable selection is an almost unlimited number of initially
 119 considered explanatory variables [17]. In this study, we define a baseline model with 76 potential
 120 regressors and its three extensions; the largest one takes into account 200+ explanatory variables. All
 121 considered models are estimated in a multivariate modeling framework in the sense of Ziel and Weron
 122 [18], i.e., an explicit 'day \times hour' matrix-like structure is used for the 24-dimensional price vectors.
 123 However, unlike when forecasting in day-ahead auction markets, where the prices are set once a day,

124 in a continuous-time intraday market we are able to use information updated in the course of the day,
 125 e.g., more recent weather forecasts.

126 3.2.1. The Baseline Model

127 The baseline model is a slightly modified LASSO-estimated model of Uniejewski *et al.* [10]. The
 128 only difference is the omission of some of the less important variables. Namely, we exclude the
 129 information about inputs distant in time and only use the latest information about past ID3 and DA
 130 prices. As a result, we obtain a model with 76 potential regressors – 21 last known ID3-Price index
 131 values from the intraday market (i.e., nearly the whole day), 24 DA prices for the target day and seven
 132 dummy variables (to account for the weekly seasonality). Given the 4-hour forecast to delivery lag
 133 and the time the DA prices are published, we can additionally include next day's DA prices when
 134 forecasting hours 16 to 24:

$$ID3^{d,h} = \underbrace{\sum_{i=4}^{24} \beta_{i-3} ID3^{d,h-i}}_{\text{past intraday prices}} + \underbrace{\sum_{i=1}^{24} \beta_{21+i} DA^{d,i}}_{\text{DA prices for day } d} + \underbrace{\sum_{i=1}^7 \beta_{45+i} D_i}_{\text{weekday dummies}} + \underbrace{\mathbb{1}_{h \geq 16} \sum_{i=1}^{24} \beta_{52+i} DA^{d+1,i}}_{\text{DA prices for day } d+1} + \varepsilon^{d,h}, \quad (6)$$

135 where $\varepsilon^{d,h}$ is the noise term. To simplify the notation when referring to an hourly product with delivery
 136 i hours after ($i > 0$) or before ($i < 0$) the product with delivery on day d and hour h (more precisely:
 137 with delivery between hour $h-1$ and h) we define:

$$(d, h+i) \equiv \left(d + \left\lfloor \frac{h+i-1}{24} \right\rfloor, h+i-24 \left\lfloor \frac{h+i-1}{24} \right\rfloor \right). \quad (7)$$

138 For instance, for $h = 2$ and $i = -5$ we have $(d, -3) \equiv (d-1, 21)$, while for $h = 2$ and $i = -2$ we have
 139 $(d, 0) \equiv (d-1, 24)$. Note, that the price for each hour is predicted 4 hours in advance, hence the first
 140 sum in the above formula starts with $i = 4$, and using the most recent information available, see Figure
 141 3. Later in the text we denote model (6) by **baseline**.

142 3.2.2. The Model with Exogenous Variables

143 The first extension of model (6) is motivated by the results of Uniejewski *et al.* [19], who showed
 144 that fundamental variables play an important role when forecasting DA prices. On the other hand,
 145 Monteiro *et al.* [20] and Andrade *et al.* [21] argued that fundamentals (historical and predicted demand,
 146 generation and weather) did not have much explanatory power when forecasting Spanish intraday
 147 prices, since DA prices already included this information. To check whether fundamentals can help
 148 in forecasting the ID3-Price index in the German intraday market, we extend the baseline model to
 149 include load, wind power generation (WPG) and photovoltaic generation (PVG) forecasts and the
 150 corresponding errors, as well as the balancing volumes (Section 2.2 for details):

$$ID3^{d,h} = \underbrace{\sum_{i=4}^{24} \beta_{i-3} ID3^{d,h-i}}_{\text{past intraday prices}} + \underbrace{\sum_{i=1}^{24} \beta_{21+i} DA^{d,i}}_{\text{DA prices for day } d} + \underbrace{\sum_{i=1}^7 \beta_{45+i} D_i}_{\text{weekday dummies}} + \underbrace{\mathbb{1}_{h \geq 16} \sum_{i=1}^{24} \beta_{52+i} DA^{d+1,i}}_{\text{DA prices for day } d+1} + \\ + \underbrace{\sum_{i=1}^{24} \beta_{76+i} \hat{X}_1^{d,i}}_{\text{load forecasts}} + \underbrace{\sum_{i=1}^{24} \beta_{100+i} \hat{X}_2^{d,i}}_{\text{WPG forecasts}} + \underbrace{\sum_{i=1}^{24} \beta_{124+i} \hat{X}_3^{d,i}}_{\text{PVG forecasts}} + \underbrace{\sum_{i=4}^{24} \beta_{148+i} (\hat{X}_1^{d,h-i} - X_1^{d,h-i})}_{\text{errors of load forecasts}} + \\ + \underbrace{\sum_{i=4}^{24} \beta_{169+i} (\hat{X}_2^{d,h-i} - X_2^{d,h-i})}_{\text{errors of WPG forecasts}} + \underbrace{\sum_{i=4}^{24} \beta_{190+i} (\hat{X}_3^{d,h-i} - X_3^{d,h-i})}_{\text{errors of PVG forecasts}} + \underbrace{\sum_{i=1}^3 \beta_{211+i} B_i^{d,h-5}}_{\text{balancing volumes}} + \varepsilon^{d,h}. \quad (8)$$

151 Later in the text we denote this model by **w/exogenous**.

152 3.2.3. The Model with Partial ID Prices

153 The second extension of model (6) is motivated by the results of Narajewski and Ziel [1]. The
 154 authors emphasize that the most important information for forecasting ID3 can be derived from recent
 155 transaction data for a given product. Hence, we extend the baseline model to include 8 additional
 156 predictors. Firstly, we add the *naïve* benchmark (5) as one of the explanatory variables. Secondly,
 157 we add variables that link the intraday to day-ahead markets and reflect changes in the expectations
 158 about price levels over time. More precisely, we construct artificial series that utilize the information
 159 from recent transaction data on the neighboring products. For $i = -4, \dots, 2$, we define seven *partial ID*
 160 *indexes*:

$$pID_i^{d,h} \equiv \frac{1}{\sum_{\tau \in [(d,h-5), (d,h-4)]} V_{\tau}^{d,h+i}} \sum_{\tau \in [(d,h-5), (d,h-4)]} V_{\tau}^{d,h+i} P_{\tau}^{d,h+i}, \quad (9)$$

161 where $V_{\tau}^{d,h}$ and $P_{\tau}^{d,h}$ are respectively the volume and price of a transaction made at time τ on a product
 162 with delivery on day d and hour h . Hence, $pID_i^{d,h}$ is a volume-weighted price of all transactions on
 163 product $(d, h + i)$ in the last hour before the forecast is computed, i.e., between 5 and 4 hours before the
 164 delivery. For example, to compute $pID_i^{d,16}$, we use seven hourly windows corresponding to $i = -4, \dots, 2$,
 165 see the gray-shaded rectangle spanning 7 hourly products in Figure 3. Note, that using the $xID_y^{d,h}$
 166 notation we can write:

$$pID_i^{d,h} \equiv {}_{4+i}ID_1^{d,h+i}. \quad (10)$$

167 Finally, we can define the model with partial ID prices as follows (later in the text we denote it by
 168 **w/partial ID**):

$$\begin{aligned} ID3^{d,h} = & \sum_{i=4}^{24} \beta_{i-3} ID3^{d,h-i} + \sum_{i=1}^{24} \beta_{21+i} DA^{d,i} + \sum_{i=1}^7 \beta_{45+i} D_i + \mathbb{1}_{h \geq 16} \sum_{i=1}^{24} \beta_{52+i} DA^{d+1,i} + \\ & + \underbrace{\sum_{i=-4}^2 \beta_{81+i} (DA^{d,h+i} - pID_i^{d,h})}_{\text{difference between DA and partial ID prices}} + \underbrace{\beta_{84} \text{naïve}^{d,h}}_{\text{naïve benchmark}} + \varepsilon^{d,h}. \end{aligned} \quad (11)$$

169 3.2.4. The Full Model

170 Now, we are ready to write the full model (denoted later in the text by **full**), which includes all
 171 elements of models (8) and (11). We end up with a maximum of 222 potential regressors, depending
 172 on whether we already know the day-ahead prices for day $d + 1$:

$$\begin{aligned} ID3^{d,h} = & \sum_{i=4}^{24} \beta_{i-3} ID3^{d,h-i} + \sum_{i=1}^{24} \beta_{21+i} DA^{d,i} + \sum_{i=1}^7 \beta_{45+i} D_i + \mathbb{1}_{h \geq 16} \sum_{i=1}^{24} \beta_{52+i} DA^{d+1,i} + \\ & + \sum_{i=1}^{24} \beta_{76+i} \hat{X}_1^{d,i} + \sum_{i=1}^{24} \beta_{100+i} \hat{X}_2^{d,i} + \sum_{i=1}^{24} \beta_{124+i} \hat{X}_3^{d,i} + \sum_{i=4}^{24} \beta_{148+i} (\hat{X}_1^{d,h-i} - X_1^{d,h-i}) + \\ & + \sum_{i=4}^{24} \beta_{169+i} (\hat{X}_2^{d,h-i} - X_2^{d,h-i}) + \sum_{i=4}^{24} \beta_{190+i} (\hat{X}_3^{d,h-i} - X_3^{d,h-i}) + \sum_{i=1}^3 \beta_{211+i} B_i^{d,h-5} + \\ & + \sum_{i=-4}^2 \beta_{219+i} (DA^{d,h+i} - pID_i^{d,h}) + \beta_{222} \text{naïve}^{d,h} + \varepsilon^{d,h} \end{aligned} \quad (12)$$

173 The final modification of the benchmark model is obtained by fixing $\beta_{222} \equiv 1$, as considered in [1].
 174 Later in the text we denote such a model by **full-diff**, because it corresponds to setting the dependent
 175 variable to the difference between ID3 and the *naïve* benchmark, instead of the ID3-Price index itself.

176 *3.3. LASSO Estimation*

177 In order to explain the estimation scheme, let us use a more compact form of the regression model:

$$X^{d,h} = \sum_{i=1}^n \beta_i V_i^{d,h}, \quad (13)$$

178 where $V_i^{d,h}$'s are the predictors and β_i 's are the corresponding coefficients. The *least absolute*
 179 *shrinkage and selection operator* (LASSO) shrinks the coefficients of the less important explanatory
 180 variables towards zero and hence performs variable selection [13,22]. The LASSO can be treated as a
 181 generalization of linear regression, where instead of minimizing only the *residual sum of squares* (RSS),
 182 the sum of RSS and a linear penalty function of the β 's is minimized:

$$\hat{\beta}_L = \min_{\beta} \{ \text{RSS} + \lambda \|\beta\|_1 \} = \min_{\beta} \left\{ \text{RSS} + \lambda \sum_{i=1}^n |\beta_i| \right\}, \quad (14)$$

183 where $\lambda \geq 0$ is a *tuning* (or *regularization*) parameter. Note that for $\lambda = 0$, we get the standard least
 184 squares estimator, for $\lambda \rightarrow \infty$, all β_i 's tend to zero, while for intermediate values of λ , there is a balance
 185 between minimizing the RSS and shrinking the coefficients.

186 Selecting a 'good' value for λ is critical. It is, however, a complex problem [8,11,17]. Because of a
 187 relatively short dataset, we are not able to reselect λ based on model performance in a validation period.
 188 Instead, we have decided to use cross-validation. It can be effectively applied to select the tuning
 189 parameter *ex-ante*, unfortunately at a cost of increased computational complexity. The procedure is
 190 discussed in more detail in Section 5.2.

191 *3.4. Forecast Averaging*

192 Combining forecasts in order to obtain more precise and robust predictions is a technique known
 193 both in the electricity price forecasting literature [14] and in forecasting in general [23]. Here, we use
 194 an arithmetic average of two predictions – obtained from the LASSO-estimated model (labeled Z) and
 195 the *naïve* forecast:

$$\text{ens}(Z) = \frac{1}{2} \widehat{\text{ID3}}_Z^{d,h} + \frac{1}{2} \text{naïve}^{d,h}. \quad (15)$$

196 The motivation for using the arithmetic mean is twofold. Firstly, it is the simplest averaging scheme,
 197 requiring no additional calibration. Secondly, it is hard to beat by 'more sophisticated' approaches [24].
 198

199 **4. Results**

200 *4.1. Forecast Evaluation*

201 The forecasting accuracy is assessed in terms of two error measures: the *Mean Absolute Error*
 202 (MAE) and the *Root Mean Squared Error* (RMSE). The scores are reported for the full out-of-sample test
 203 period of $D = 852$ days, i.e., 31.12.2015 to 30.04.2018, see Figure 1, jointly for all hours of the day:

$$\text{MAE} = \frac{1}{24D} \sum_{d=1}^D \sum_{h=1}^{24} |\mathcal{E}_Z^{d,h}| \quad \text{and} \quad \text{RMSE} = \sqrt{\frac{1}{24D} \sum_{d=1}^D \sum_{h=1}^{24} |\mathcal{E}_Z^{d,h}|^2}, \quad (16)$$

Table 1. MAE and RMSE errors for all 852 days of the out-of-sample test period, see Figure 1. The upper part of the table reports on the results obtained for models which use back-transformation (4), while the lower that use back-transformation (3). Columns labeled **Model** refer to the models themselves, while those labeled **ens(Model)** to ensembles with the *naïve* benchmark, as defined in Eqn. (15). Errors smaller than those of the *naïve* benchmark are emphasized in bold.

Back-transformation	Model class	MAE		RMSE	
		Model	ens(Model)	Model	ens(Model)
	naïve	3.774	—	5.999	—
With correction proposed in [1], see Eqn. (4)	baseline	4.433	3.866	7.178	6.246
	w/exogenous	4.234	3.720	6.956	6.040
	w/partial ID	3.771	3.702	6.052	5.903
	full	3.710	3.630	6.072	5.841
	full-diff	3.723	3.700	5.900	5.906
As originally introduced in [16], see Eqn. (3)	baseline	4.427	3.868	7.294	6.285
	w/exogenous	4.242	3.724	7.069	6.086
	w/partial ID	3.807	3.708	6.182	5.942
	full	3.733	3.635	6.178	5.877
	full-diff	3.699	3.710	5.894	5.923

204 where $\mathcal{E}_Z^{d,h} = ID3^{d,h} - \widehat{ID3}^{d,h}$ is the prediction error for model Z , for day d and hour h . Recall, that the
 205 RMSE is the optimal measure for least square problems, whereas the MAE is more robust to outliers
 206 [22]. The resulting aggregate MAE and RMSE scores can be used to provide a ranking of the models,
 207 but do not allow to draw statistically significant conclusions on the relative performance. Therefore,
 208 we use the Giacomini and White [15] test for *conditional predictive ability* (CPA), which can be regarded
 209 as a generalization of the commonly used Diebold-Mariano test for *unconditional* predictive ability [2].
 210 First, for each pair of models, we compute the so-called multivariate loss differential series [16,18]:

$$\Delta_{A,B}^d = \|\widehat{\mathcal{E}}_A^d\|_p - \|\widehat{\mathcal{E}}_B^d\|_p, \quad (17)$$

211 where $\|\mathcal{E}_Z^d\|_p = (\sum_{h=1}^{24} |\mathcal{E}_Z^{d,h}|^p)^{1/p}$ is the p -th norm of the 24-dimensional vector of out-of-sample errors
 212 for model Z . Then, we calculate the p -values of the CPA test with null $H_0 : \alpha = 0$ in the regression:
 213 $\Delta_{A,B}^d = \alpha' \mathbb{X}^{d-1} + \varepsilon^d$, where \mathbb{X}^{d-1} contains information for day $d - 1$, i.e., a constant and lags of $\Delta_{A,B}^d$.

214 4.2. MAE and RMSE Errors

215 In Table 1 we report the MAE and RMSE metrics for all considered models and their ensembles
 216 with the *naïve* benchmark, as defined in Eqn. (15). In Figure 4 we additionally visualize the set of
 217 results corresponding to back-transformation (4), reflecting the upper part of Table 1. Several important
 218 conclusions can be drawn:

- 219 • In terms of the MAE, three models outperform the *naïve* benchmark even without averaging
 220 forecasts. However, only the **full-diff** approach manages to beat the benchmark in terms of the
 221 RMSE, see the values emphasized in bold in Table 1 in columns labeled **Model**.
- 222 • All baseline model extensions yield lower errors than the baseline model itself, both in terms of
 223 the MAE and RMSE.
- 224 • The **full** model outperforms the model with partial ID prices, which suggests that using the
 225 exogenous variables discussed in Section 2.2 improves forecast accuracy.
- 226 • On average, back-transformation (4) proposed by Narajewski and Ziel [1] (the upper part of Table
 227 1) performs slightly better than the originally introduced one (the lower part of Table 1). For this
 228 reason, in what follows we only discuss the results of back-transformation (4).
- 229 • Apart from the **full-diff** model, every other model performs better when its forecasts are averaged
 230 using Eqn. (15). Compare the columns labeled **Model** and **ens(Model)** in Table 1.

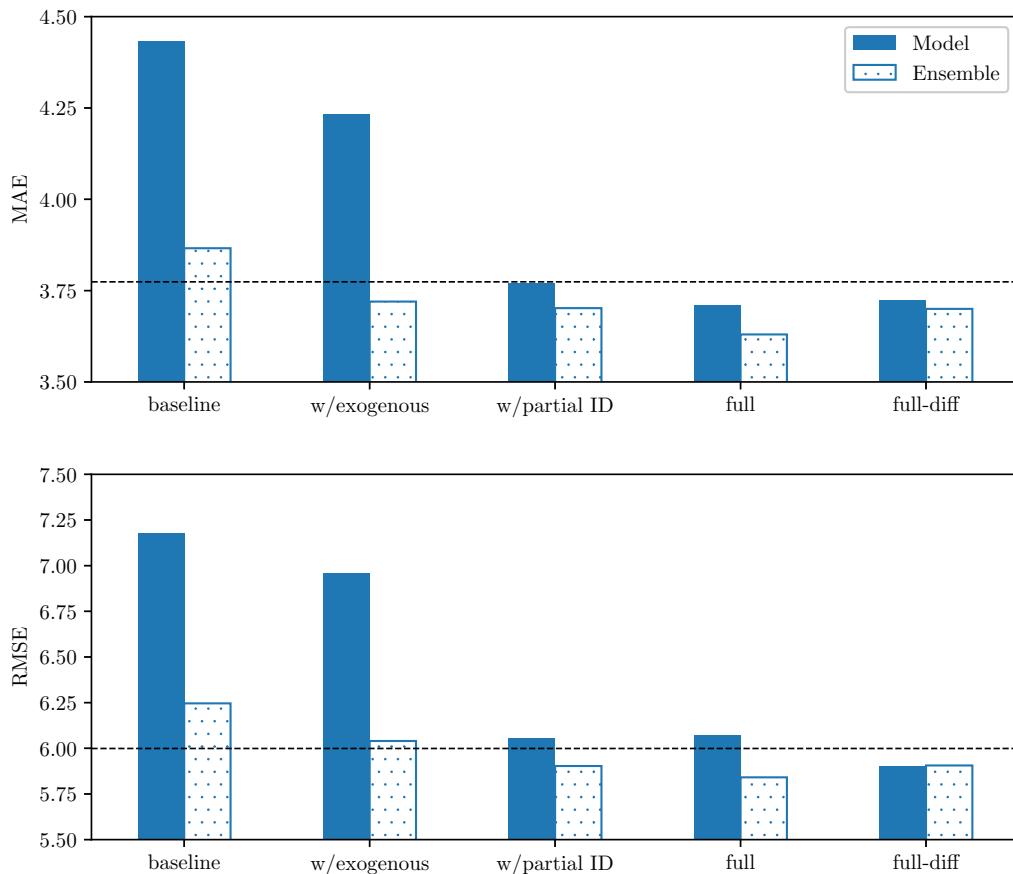


Figure 4. Bar plots illustrating the MAE (top) and RMSE (bottom) errors reported in the upper part of Table 1, i.e., for the *naïve* benchmark and models that utilize back-transformation (4). The brown dashed lines correspond to the benchmark, the solid bars represent the individual models and the dotted bars the corresponding ensembles.

- The improvements from averaging forecasts are much higher (ca. 12-14%) for models that do not use the *naïve* benchmark as a regressor. However, what is surprising, the gains are noticeable (ca. 2-4%) even for models which include this explanatory variable. Apparently, the LASSO scheme does not put enough weight to this variable. Setting $\beta_{222} = 0$ in the **full-diff** model helps, but does not solve the problem completely. We return to this issue in Section 4.4.

236 4.3. Conditional Predictive Ability

237 We perform the Giacomini and White [15] test of *conditional predictive ability* (CPA) to check
 238 whether the differences in forecasting accuracy are statistically significant. We conduct the test only for
 239 the *naïve* benchmark and models that utilize back-transformation (4). The *p*-values of the pairwise
 240 comparisons are visualized in Figure 5. We can see that:

- *Naïve* forecasts can be significantly outperformed by predictions of models that include partial ID information and exogenous variables (**full** and **full-diff** models) without averaging, and by most of models after ensembling.
- Forecasts of the baseline model are significantly outperformed by those of any other LASSO-estimated model.
- For all considered models, ensembling significantly improves the accuracy in terms of the linear errors.

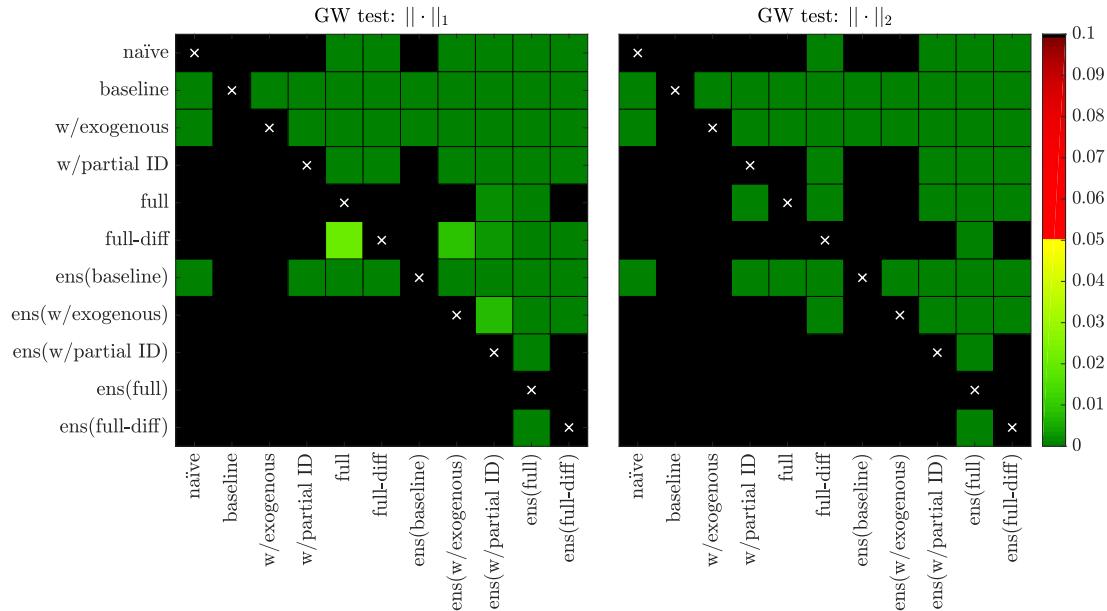


Figure 5. Results of the conditional predictive ability (CPA) test of Giacomini and White [15] for the linear (left) and quadratic (right) errors. We use a heat map to indicate the range of the p -values – the closer they are to zero (\rightarrow dark green) the more significant is the difference between the forecasts of a model on the X-axis (better) and the forecasts of a model on the Y-axis (worse).

248 • Forecasts of the **ens(full)** model significantly outperform those of any other model, both in terms
249 of the linear and quadratic errors.

250 *4.4. Why Does Ensembling Improve the Results?*

251 As the above reported results indicate, the ensemble is in most cases able to outperform both
252 individual forecasts. However, the simple averaging scheme proposed in Eqn. (15) might not be the
253 optimal for this task. Hence, in this Section we consider a more general formula:

$$\text{ens}(Z) = (1 - w) \cdot \widehat{ID}_Z^{d,h} + w \cdot \text{naïve}^{d,h}, \quad (18)$$

254 where w is the weight assigned to the *naïve* forecast. In Figure 6 we depict the MAE of ensemble (18)
255 as a function of w for the **full** model with back-transformation (4). The MAE curve is convex with a

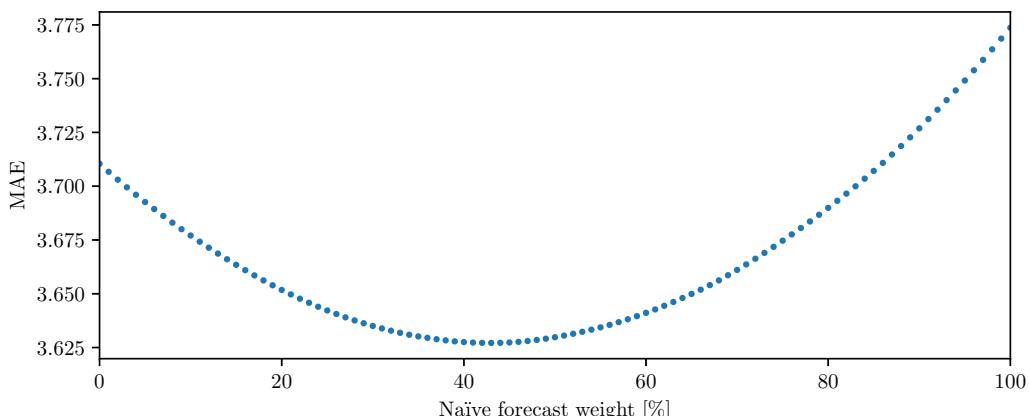


Figure 6. The MAE errors of ensembles created using Eqn. (18) that utilize the **full** model with back-transformation (4), as a function of the weight assigned to the *naïve* benchmark.

Table 2. The MAE errors in three price regimes (*from top to bottom*): the highest 2.5%, the middle 50% and the lowest 2.5% observations in the out-of-sample test period. The LASSO model used is the **full** model with back-transformation (4).

Regime	Full model	Naïve benchmark	Ensemble
High	12.418	11.938	12.025
Middle	2.675	2.795	2.631
Low	13.957	12.352	12.859

256 minimum at ca. $w = 45\%$. However, the value for $w = 50\%$, i.e., the simple mean used in the study, is
 257 very close to the optimum.

258 The reason behind this shape is the characteristic of LASSO forecasts, estimated on long calibration
 259 windows. Specifically, the model is trained to generalize well, and such a behavior is reinforced by the
 260 fact that there are only a few spikes in the calibration window. As such, the model is able to better
 261 predict prices at the typically observed levels at the cost of underestimating spikes (both positive and
 262 negative), see Table 2. Therefore the ensemble (regardless of the weights) balances the generalization
 263 of the LASSO forecasts with the ability to quickly adapt to non-recurring phenomena of the *naïve*
 264 benchmark.

265 5. Discussion and Conclusions

266 The motivation for this study was a claim made by Narajewski and Ziel [1], that the German
 267 intraday, continuous-time market for hourly products was weak-form efficient, i.e., that the best
 268 predictor for the ID3-Price index was the most recent transaction price. Performing a comprehensive
 269 forecasting exercise involving parameter-rich regression-type models with four types of fundamental
 270 variables as inputs, we have been able to challenge their claim and show that we can significantly
 271 outperform the *naïve* forecast by combining it with a prediction of a LASSO-estimated model. To keep
 272 the empirical part of the paper concise, we have opted for omitting some of the considerations. Let us
 273 now briefly discuss them.

274 5.1. The Moment of Forecasting the ID3-Price Index

275 After consulting with practitioners, we have decided to focus on a forecasting scheme used by
 276 Uniejewski *et al.* [10], where the predictions are made four hours before delivery. This means, that a
 277 trader has an hour to make the decisions and build a long or short position before the ID3 transaction
 278 window opens three hours before delivery. However, to check whether also the $\text{Naive.MR1} \equiv {}_{3.25}ID_{0.25}^{d,h}$
 279 benchmark of Narajewski and Ziel [1] can be outperformed, we have recalculated our models in their
 280 setting. Naturally, the *Naive.MR1* is harder to beat than our *naïve* model, because it uses more recent
 281 transaction data. Yet, the relative performance vs. the benchmark was qualitatively the same as
 282 reported in Section 4.

283 5.2. Selecting the LASSO Regularization Parameter

284 For the choice of the regularization parameter, we have resorted to using an automated cross
 285 validation (CV) technique. More precisely, the applied CV procedure consisted of three folds with a
 286 dense logarithmic grid of 50 λ values spanning six orders of magnitude. Two thirds of the calibration
 287 sample was used for training the models estimated with different λ 's, the remaining one third for
 288 testing them. This resulted in a significantly increased computational burden, due to the need of testing
 289 multiple models for multiple λ 's, but also allowed for an *ex-ante* choice of the regularization parameter.
 290 We have also performed a limited numerical experiment to compare with the results obtained for the
 291 best *ex-post* selected λ . As it turned out, the difference in the MAE and RMSE errors was less than 0.5%.

292 5.3. The Impact of Intraday Updates of the Fundamentals

293 We have also tried to assess the impact of using more recent forecasts of the system-wide load,
294 wind power generation, photovoltaic generation and balancing volumes. We have measured the
295 predictive performance of our models under the assumption that we know future values of the
296 exogenous variables until the end of the target day. With such 'perfect forecasts' we have been able
297 to additionally reduce the forecasting error by more than 2%. This result emphasizes how important
298 in short-term forecasting is the availability of more frequently updated forecasts of the exogenous
299 variables.

300 5.4. Model Size

301 As mentioned above, the LASSO procedure allows for an efficient estimation of parameter-rich
302 models. However, the quality of the obtained estimates can differ for different sizes of the regression
303 model. Having only ca. 360 observations in the calibration window, we may obtain worse forecasts if
304 we consider dozens or hundreds of redundant variables in the model. The **full** model defined by Eqn.
305 (12) includes only ca. 200 potential predictors. Interestingly it outperforms by ca. 0.6% a richer model
306 with more than 800 variables (the same information sources, but more past observations). Therefore
307 we advise to use expert knowledge and/or back-testing to eliminate non-informative predictors before
308 running the LASSO.

309 5.5. Directions for Future Research

310 Given that the literature on forecasting prices in European intraday power markets is still very
311 scarce, our study is a step forward towards understanding the impact of using recent transaction
312 data and exogenous variables on the predictive performance. Our study can be further expanded
313 in several directions. In particular, we report the results for only one VST (for more suggestions see
314 [16]) and without decomposing the data into a long-term seasonal component and the remaining
315 stochastic part (for the importance of doing this see, e.g., [25,26]). Furthermore, we have focused on
316 point forecasting, ignoring the full predictive distribution [7,27] or – what may be even more important
317 in continuous-time intraday markets – the trajectories [12,28]. We have restricted ourselves to using
318 regression-based models, however, machine learning techniques could be used in this context as well
319 [11,20,21,29], naturally at the cost of an increased computational burden. Finally, recall from Section
320 4.4, that the ensemble we use balances the generalization of the LASSO forecasts with the ability to
321 quickly adapt to non-recurring phenomena of the *naïve* benchmark. A potentially viable alternative
322 would be to use the approach introduced by Hubicka *et al.* [30], which averages forecasts of a given
323 model across calibration windows of different length.

324 **Author Contributions:** Conceptualization, R.W.; investigation, G.M. and B.U.; software, G.M. and B.U.; validation,
325 all authors; writing—original draft, G.M. and B.U.; writing—review and editing, all authors. All authors have
326 read and agree to the published version of the manuscript.

327 **Funding:** This work was partially supported by the National Science Center (NCN, Poland) through grant No.
328 2018/30/A/HS4/00444 (to G.M.), the Ministry of Science and Higher Education (MNiSW, Poland) through grant
329 No. 0199/DIA/2019/48 (to B.U.), and the German Research Foundation (DFG, Germany) and the National
330 Science Center (NCN, Poland) through grant No. 2016/23/G/HS4/01005 (to R.W.).

331 **Conflicts of Interest:** The authors declare no conflict of interest.

332 References

- 333 1. Narajewski, M.; Ziel, F. Econometric modelling and forecasting of intraday electricity prices. *Journal of
334 Commodity Markets* **2019**. (DOI: 10.1016/j.jcomm.2019.100107).
- 335 2. Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. *International
336 Journal of Forecasting* **2014**, *30*, 1030–1081.
- 337 3. Goodarzi, S.; Perera, H.; Bunn, D. The impact of renewable energy forecast errors on imbalance volumes
338 and electricity spot prices. *Energy Policy* **2019**, *134*, 110827.

339 4. Kath, C. Modeling intraday markets under the new advances of the cross-border intraday project (XBID):
340 Evidence from the German intraday market. *Energies* **2019**, *12*, 4339.

341 5. Ciarreta, A.; Muniain, P.; Zarraga, A. Modeling and forecasting realized volatility in German–Austrian
342 continuous intraday electricity prices. *Journal of Forecasting* **2017**, *36*, 680–690.

343 6. Kiesel, R.; Paraschiv, F. Econometric analysis of 15-minute intraday electricity prices. *Energy Economics*
344 **2017**, *64*, 77–90.

345 7. Bunn, D.; Gianfreda, A.; Kermér, S. A trading-based evaluation of density forecasts in a real-time electricity
346 market. *Energies* **2018**, *11*, 2658.

347 8. Kath, C.; Ziel, F. The value of forecasts: Quantifying the economic gains of accurate quarter-hourly
348 electricity price forecasts. *Energy Economics* **2018**, *76*, 411–423.

349 9. Maciejowska, K.; Nitka, W.; Weron, T. Day-ahead vs. Intraday – Forecasting the price spread to maximize
350 economic benefits. *Energies* **2019**, *12*, 631.

351 10. Uniejewski, B.; Marcjasz, G.; Weron, R. Understanding intraday electricity markets: Variable selection and
352 very short-term price forecasting using LASSO. *International Journal of Forecasting* **2019**, *35*, 1533–1547.

353 11. Janke, T.; Steinke, F. Forecasting the price distribution of continuous intraday electricity trading. *Energies*
354 **2019**, *12*, 4262.

355 12. Narajewski, M.; Ziel, F. Estimation and simulation of the transaction arrival process in intraday electricity
356 markets. *Energies* **2019**, *12*, 4518.

357 13. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. *An Introduction to Statistical Learning with Applications in R*;
358 Springer, New York, 2013.

359 14. Nowotarski, J.; Raviv, E.; Trück, S.; Weron, R. An empirical comparison of alternate schemes for combining
360 electricity spot price forecasts. *Energy Economics* **2014**, *46*, 395–412.

361 15. Giacomini, R.; White, H. Tests of conditional predictive ability. *Econometrica* **2006**, *74*, 1545–1578.

362 16. Uniejewski, B.; Weron, R.; Ziel, F. Variance stabilizing transformations for electricity spot price forecasting.
363 *IEEE Transactions on Power Systems* **2018**, *33*, 2219–2229.

364 17. Uniejewski, B.; Weron, R. Efficient forecasting of electricity spot prices with expert and LASSO models.
365 *Energies* **2018**, *11*, 2039.

366 18. Ziel, F.; Weron, R. Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs.
367 multivariate modeling frameworks. *Energy Economics* **2018**, *70*, 396–420.

368 19. Uniejewski, B.; Nowotarski, J.; Weron, R. Automated variable selection and shrinkage for day-ahead
369 electricity price forecasting. *Energies* **2016**, *9*, 621.

370 20. Monteiro, C.; Ramirez-Rosado, I.; Fernandez-Jimenez, L.; Conde, P. Short-term price forecasting models
371 based on artificial neural networks for intraday sessions in the Iberian electricity market. *Energies* **2016**,
372 *9*, 721.

373 21. Andrade, J.; Filipe, J.; Reis, M.; Bessa, R. Probabilistic price forecasting for day-ahead and intraday markets:
374 Beyond the statistical model. *Sustainability* **2017**, *9*, 1990.

375 22. Ziel, F. Forecasting electricity spot prices using LASSO: On capturing the autoregressive intraday structure.
376 *IEEE Transactions on Power Systems* **2016**, *31*, 4977–4987.

377 23. Elliott, G.; Timmermann, A. *Economic Forecasting*; Princeton University Press, 2016.

378 24. Diebold, F.X.; Shin, M. Machine learning for regularized survey forecast combination: Partially-egalitarian
379 LASSO and its derivatives. *International Journal of Forecasting* **2018**, *35*, 1679–1691.

380 25. Nowotarski, J.; Weron, R. On the importance of the long-term seasonal component in day-ahead electricity
381 price forecasting. *Energy Economics* **2016**, *57*, 228–235.

382 26. Marcjasz, G.; Uniejewski, B.; Weron, R. On the importance of the long-term seasonal component in
383 day-ahead electricity price forecasting with NARX neural networks. *International Journal of Forecasting*
384 **2019**, *35*, 1520–1532.

385 27. Nowotarski, J.; Weron, R. Recent advances in electricity price forecasting: A review of probabilistic
386 forecasting. *Renewable and Sustainable Energy Reviews* **2018**, *81*, 1548–1568.

387 28. Muniain, P.; Ziel, F. Probabilistic forecasting in day-ahead electricity markets: Simulating peak and off-peak
388 prices. *International Journal of Forecasting* **2020**. (DOI: 10.1016/j.ijforecast.2019.11.006).

389 29. Oksuz, I.; Ugurlu, U. Neural network based model comparison for intraday electricity price forecasting.
390 *Energies* **2019**, *12*, 4557.

³⁹¹ 30. Hubicka, K.; Marcjasz, G.; Weron, R. A note on averaging day-ahead electricity price forecasts across
³⁹² calibration windows. *IEEE Transactions on Sustainable Energy* **2019**, *10*, 321–323.

³⁹³ © 2020 by the authors. Submitted to *Energies* for possible open access publication under the terms and conditions
³⁹⁴ of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).