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Abstract: A recent electricity price forecasting study claims that the German intraday, continuous-time
market for hourly products is weak-form efficient, i.e., that the best predictor for the so-called
ID3-Price index is the most recent transaction price. Here, we undermine this claim and show
that we can beat the naive forecast by combining it with a prediction of a parameter-rich model
estimated using the least absolute shrinkage and selection operator (LASSO). We further argue,
that that if augmented with timely predictions of fundamental variables for the coming hours, the
LASSO-estimated model itself can significantly outperform the naive forecast.

Keywords: Intraday electricity market; ID3-Price index; Price forecasting; Variable selection;
Fundamental variables; LASSO; Averaging forecasts

1. Introduction

After performing a comprehensive empirical study on intraday electricity price forecasting and
considering models with tens of thousands of regressors, Narajewski and Ziel [1] conclude that the
German continuous-time market for hourly products is weak-form efficient, i.e., that the best predictor
is the most recent transaction price. Their result is surprising and at the same time disappointing from
a research perspective. Here, we undermine their claim and show that it is possible to build models
that significantly outperform the naive benchmark. Consequently, we invalidate the conjecture that
the German intraday market for hourly products is weak-form efficient.

This paper belongs to a new strand of literature on forecasting prices in intraday electricity
markets. To date, the workhorse of power trading in Europe has been the uniform price auction,
and a vast majority of research and applications have concerned day-ahead (DA) electricity prices [2].
However, the rapid expansion and integration of renewable energy sources (most notably wind and
solar), active demand side management (smart meters, smart appliances, etc.) and the introduction
of the XBID pan-European trading platform have shifted the focus to intraday markets [3,4]. One
of the more liquid — and hence more studied — marketplaces, is the German intraday market for
quarter-hourly and hourly products [5-11]. In this continuous-time market, the majority of trading
takes place in the last couple of hours before gate closure [12] and on the hourly products [1]; the latter
are traded from 15:00 on day d — 1 until 5 minutes before the delivery starts on day d, or 30 minutes
before if the trade is made between the delivery zones. The leading reference price is the so-called
ID3-Price index (or simply ID3), which is also an underlying instrument of exchange-traded derivative
products (see www.eex.com). The index is computed as the volume-weighted average price of all
trades on the quarter-hourly and hourly products in the three hour window directly preceding the
delivery (see www.epexspot.com).

In this article, we focus on predicting the ID3-Price index a few hours-ahead and develop
regression type models that outperform the naive benchmark. To this end, we consider a large
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Figure 1. ID3-Price index ID3%" (top) and day-ahead prices DA%" (bottom) from 1.01.2015 to 30.04.2018.
The vertical dashed lines mark the beginning of the 852-day long out-of-sample test period.

set of past ID3 values, past DA prices and forward-looking fundamental variables, and utilize the least
absolute shrinkage and selection operator (LASSO) [13] to eliminate regressors with low explanatory power,
as well as apply forecast averaging [14]. By comparing performance of different model structures,
we draw important conclusions regarding variable selection and provide recommendations for very
short-term electricity price forecasting.

The remainder of the paper is structured as follows. In Section 2, we introduce the dataset and
discuss the use of variance stabilizing transformations (VSTs). Next, in Section 3 we describe the naive
approach proposed by Narajewski and Ziel [1] and introduce the model structures used in our study.
In Section 4, we compare the predictive performance in terms of two commonly used error measures
and the Giacomini and White [15] test for conditional predictive ability. Finally, in Section 5, we wrap
up the results and conclude.

2. The Dataset

2.1. The ID3-Price Index and DA Prices

The ID3-Price index takes into account only the most recent trades, i.e., transactions that took place
no earlier than 3 hours before delivery. EPEX SPOT SE publishes the index, however, the currently
covered period is too short for a comprehensive evaluation of the forecasts. Therefore, following
Narajewski and Ziel [1] and Uniejewski et al. [10], we use an ID3-like time-series reconstructed from
the individual transactions and denote it by ID3%", where d is the day and / is the hour of delivery,
see the top panel in Figure 1. In addition to past ID3 values, we also use prices from the German
day-ahead (DA) market, see the bottom panel in Figure 1. Recall, that the DA prices are set around
noon on day d — 1 for all 24 hours of day d; we denote them by DA%",

Both time series are of hourly resolution and span 1216 days ranging from 1.01.2015 to 30.04.2018.
Like the majority of electricity price forecasting studies, we consider a rolling window scheme. Initially,
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Figure 2. Three forward-looking fundamental time-series: system-wide load forecasts (top), wind
generation forecasts (middle) and solar generation forecasts (bottom) for the period from 1.01.2015 to
30.04.2018. All three are published on day 4 — 1 and concern the 24 hours of day d. As in Figure 1, the
vertical dashed lines mark the beginning of the 852-day long out-of-sample test period.

we fit our models to data from 1.01.2015 hour 1 to 30.12.2015 hour 24 (i.e., we use a 364-day window)
and compute the price forecasts for the first hour of 31.12.2015. Next, the window is rolled forward by
1 hour and the predictions for the second hour of 31.12.2015 are generated. This procedure is repeated
until forecasts for the last hour in the 852-day long out-of-sample test period (i.e., 30.04.2018 hour 24)
are made.

2.2. Exogenous Variables

The set of exogenous variables considered in this study includes three pairs of time-series that
describe the demand-supply relationship in Germany:

e the system-wide load Xf'h and its day-ahead forecast X,
e the total wind power generation (WPG; off- and on-shore) Xg’h and its day-ahead forecast )A(g'h ,
e and the total photovoltaic generation (PVG) Xg’h and its day-ahead forecast X,

where d is the target day and / is the hour. The day-ahead forecasts }A(f’h are plotted in Figure 2; the
corresponding actual values Xf’h of the fundamental variables are indistinguishable from them at
this resolution. Naturally, the latter are known ex-post, hence only their lagged values can be used for
forecasting. As discussed in Section 3, we utilize them by constructing a series of forecast errors, i.e.,
)?fl’h — Xf’h , for the time moments for which the actual values are available; we assume that Xfl’h is
known immediately after its hourly period ends, i.e., at (d, 1+ 1). Although an assumption, advances
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in on-line data collection significantly reduce the latency from the data source to the data provider, to
the extent that in the near future this may become reality.

As Goodarzi et al. [3] argue, wind and photovoltaic generation forecasting errors increase the
absolute levels of system imbalance in Germany and these in turn influence electricity prices. Hence,
we additionally use a set of balancing volumes Bf’hiS for the three (i = 1,2, 3) quarter-hourly periods
directly preceding the time at which the forecast is made, i.e., the period spans the first 45 minutes
of the hour preceding the moment of computing the forecast. As in Narajewski and Ziel [1], B?’h is
defined as the sum of imbalances of all German Transmission System Operators for day d and hour /;
this data is published every quarter-hour, 15 minutes after the end of the delivery.

2.3. Variance Stabilizing Transformation

Following the recommendations put forward by Uniejewski et al. [16], we use the so-called
Variance Stabilizing Transformation (VST) to reduce the impact of extreme observations present in
demand, generation and particularly in electricity price data. Before applying the VST, each variable
is standardized by subtracting the sample median and dividing by the sample Median Absolute
Deviation (MAD) or by the sample standard deviation if MAD = 0, corrected by the 75th percentile of
the standard normal distribution zg 75:

§ — Median(¢)

¢= 20'75W’ 1)

where 9 is the in-sample vector of a given variable, ¢ is a single element of 1 and ¢ its standardized
value. Then, we use a well performing VST - the area hyperbolic sine (asinh) — on ¢. However, unlike
earlier studies, we apply the VST to each variable separately due to a large number of zero-valued

¢ = asinh(¢) = log <§+\/§2+1>, )

where ¢ is the VST-transformed value of 9.
The back-transformation is more tricky. Uniejewski et al. [16] simply set:

observations in the PVG series:

_ MAD(g)

sinh(¢) + Median(¢). 3)
20.75

4

However, Narajewski and Ziel [1] argue that the latter is not correct since in most cases E sinh(X) #
sinh(EX). As a remedy, they propose to use the following, mathematically correct back-transformation:

_ MAD(y) ¢

P sinh(¢ + ¢;) + Median(y), 4)
i=1

z0.75D

where ¢; are in-sample residuals of the model and D is the size of the calibration window. In this study
we compare model performance for both back-transformations.

3. The Models

3.1. The Naive Benchmark

Recall, that Narajewski and Ziel [1] conclude their empirical study of intraday hourly products by
stating that the market is weak-form efficient, i.e., that the best predictor is the most recent transaction
price. Since we want to challenge this conjecture, as our benchmark we define:

naive" = 4Ing]215, (5)
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Figure 3. Illustration of the forecasting framework using actual transaction data for the period from
26.04.2018 16:00 to 27.04.2018 24:00. The black step function indicates the time the delivery starts (every
hour of Friday, 27.04.2018), the circles refer to actual trades (circle size represents the traded volume —
from 0.1 to 300 MWHh, color represents the price — see the colorbar on the right) and the red step function
represents the time the forecasts are made. For instance, at 12:00 on 27.04.2018 when forecasting the
price for 16:00 (—), the most recent ID3 value is for 12:00 (x). The grey-shaded area indicates the data
used for computing the seven partial ID3 indices utilized when forecasting the price for hour 16, see
Section 3.2.3 for details.

where JCIDg'h denotes the volume-weighted price of transactions that took place in the intraday (ID)
market in a y-hour window that ended x hours before delivery on day d and hour /, see Eqn. (2) in [1].
Using this notation the ID3-Price index can be defined as ID3%h = OIDg’h , i.e., the volume-weighted
price of transactions that took place in the last three hours of trading (excluding the last 5 or 30 minutes,
see Section 2).

Note, that our naive benchmark is not identical to the one used in [1], i.e., Naive. MR1 = 3_251Dgf§‘5.
Instead of assuming that the trader makes the decision and places orders in a 15-minute window
ending 3 hours before delivery, we give her a one hour window for making the trading decisions
(between 4 and 3 hours before delivery). This is illustrated in Figure 3, where the red step function
represents the time the forecasts are made (4 hours before delivery) and the black step function the
time the delivery starts.

3.2. LASSO-estimated Models

An advantage of using automated variable selection is an almost unlimited number of initially
considered explanatory variables [17]. In this study, we define a baseline model with 76 potential
regressors and its three extensions; the largest one takes into account 200+ explanatory variables. All
considered models are estimated in a multivariate modeling framework in the sense of Ziel and Weron
[18], i.e., an explicit ‘day x hour’ matrix-like structure is used for the 24-dimensional price vectors.
However, unlike when forecasting in day-ahead auction markets, where the prices are set once a day,
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in a continuous-time intraday market we are able to use information updated in the course of the day,
e.g., more recent weather forecasts.

3.2.1. The Baseline Model

The baseline model is a slightly modified LASSO-estimated model of Uniejewski et al. [10]. The
only difference is the omission of some of the less important variables. Namely, we exclude the
information about inputs distant in time and only use the latest information about past ID3 and DA
prices. As a result, we obtain a model with 76 potential regressors — 21 last known ID3-Price index
values from the intraday market (i.e., nearly the whole day), 24 DA prices for the target day and seven
dummy variables (to account for the weekly seasonality). Given the 4-hour forecast to delivery lag
and the time the DA prices are published, we can additionally include next day’s DA prices when
forecasting hours 16 to 24:

24 24 7 24
dh _ dh—i di d+1,i d,h
ID3*" =Y " Bi 3ID3*" ™'+ ) o1 ;DAY + ) BusyiDi + =16 ), Bso i DA €M, (6)
i=4 i=1 i=1 i=1
past intraday prices DA prices for day d weekday dummies DA prices for day d + 1
where ¢4/ is the noise term. To simplify the notation when referring to an hourly product with delivery

i hours after (i > 0) or before (i < 0) the product with delivery on day d and hour & (more precisely:
with delivery between hour & — 1 and /) we define:

e = (a+ [P o [P, o

For instance, for 1 = 2 and i = —5 we have (d, —3) = (d — 1,21), while for » = 2 and i = —2 we have
(d,0) = (d —1,24). Note, that the price for each hour is predicted 4 hours in advance, hence the first
sum in the above formula starts with i = 4, and using the most recent information available, see Figure
3. Later in the text we denote model (6) by baseline.

3.2.2. The Model with Exogenous Variables

The first extension of model (6) is motivated by the results of Uniejewski et al. [19], who showed
that fundamental variables play an important role when forecasting DA prices. On the other hand,
Monteiro et al. [20] and Andrade et al. [21] argued that fundamentals (historical and predicted demand,
generation and weather) did not have much explanatory power when forecasting Spanish intraday
prices, since DA prices already included this information. To check whether fundamentals can help
in forecasting the ID3-Price index in the German intraday market, we extend the baseline model to
include load, wind power generation (WPG) and photovoltaic generation (PVG) forecasts and the
corresponding errors, as well as the balancing volumes (Section 2.2 for details):

24 ! 7 24 ,
ID3"" = Y~ Bi 3ID3"" '+ Y B1 ;DAY + Y Bus 1 iDi + Lyz16 ) P DAY+
i=4 i=1 i=1 i=1

24 24 24 24
od,i Sd,i od,i Sdh—i  ydh—i
+ ) BreriX?' + Y Broo+iXy" + Y ProariXy' 4 Y Brasi (X1 - X] l) +
i1 izl i=1 i—4

load forecasts WPG forecasts PVG forecasts errors of load forecasts

24

+ ) Bieo+i (Xi'h*l - XZ"H) + ) Broo+i (Xi'h Xy l) + Y BB O e (8)
i i— i=1

errors of WPG forecasts errors of PVG forecasts balancing volumes

Later in the text we denote this model by w/exogenous.
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3.2.3. The Model with Partial ID Prices

The second extension of model (6) is motivated by the results of Narajewski and Ziel [1]. The
authors emphasize that the most important information for forecasting ID3 can be derived from recent
transaction data for a given product. Hence, we extend the baseline model to include 8 additional
predictors. Firstly, we add the naive benchmark (5) as one of the explanatory variables. Secondly,
we add variables that link the intraday to day-ahead markets and reflect changes in the expectations
about price levels over time. More precisely, we construct artificial series that utilize the information
from recent transaction data on the neighboring products. For i = —4, ..., 2, we define seven partial ID
indexes:

1

pIDtii,h = V.?'h+ipg'h+i, (9)

V—f-l’thl

Yore[(dh—5),(dh—4)] rel(dh—5),(dh—4)]

where V& and P4 are respectively the volume and price of a transaction made at time 7 on a product
with delivery on day d and hour /. Hence, pIDf’h is a volume-weighted price of all transactions on
product (d, h + i) in the last hour before the forecast is computed, i.e., between 5 and 4 hours before the
delivery. For example, to compute pID?'m, we use seven hourly windows corresponding toi = —4, ..., 2,

see the gray-shaded rectangle spanning 7 hourly products in Figure 3. Note, that using the J(IDz'h
notation we can write:

pID™" =, DA (10)

Finally, we can define the model with partial ID prices as follows (later in the text we denote it by
w/partial ID):

2 o 7 24 ,
ID3"" = Y~ B; 3ID3" 1 1Y o1 ;DAY + Y BasyiDi + Ly>16 Y, Bsori DA+
=4 iz i=1 iz
2 .
+ Z Bsi+i (DA‘”‘J” — pID?’h) + Bss naive® 4 N, (11)
i=—4 —_—

naive benchmark

difference between DA and partial ID prices

3.2.4. The Full Model

Now, we are ready to write the full model (denoted later in the text by full), which includes all
elements of models (8) and (11). We end up with a maximum of 222 potential regressors, depending
on whether we already know the day-ahead prices for day 4 + 1:

24 o 7 24 '
ID3%" =Y B; 3ID3%" 1 + Y By iDAY + Y BusiiDi + Lys16 Y Bso+ DA+
i—4 i=1 i=1 i=1

2 24 24 2
Sd,i Sd,i Sd,i Sdi—i  ~ed i
+ Z Bre+iX1" + Z B1oo+iX5" + Z Bi2a+iX5" + Z Brag+i (le P XY l) T

i=1 i=1 i=1 i=4
e i dh—i\ | e Sdh—i  ~pdh—i 3 dh—5
+ ) Bieo+i (Xz' - Xy l) + Y Broo+i (Xg' Xy 1) +)_ BonsiBy T+
i—4 i—4 i=1
2 .
+ Y Boroyi (DAdW _ pIDf'h) + Bon naive™ + e (12)

i=—4
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The final modification of the benchmark model is obtained by fixing B2 = 1, as considered in [1].
Later in the text we denote such a model by full-diff, because it corresponds to setting the dependent
variable to the difference between ID3 and the naive benchmark, instead of the ID3-Price index itself.

3.3. LASSO Estimation

In order to explain the estimation scheme, let us use a more compact form of the regression model:

n
Xd,h — Z‘Bi‘/id,h/ (13)
i=1

where Vl.d’h ‘s are the predictors and B;’s are the corresponding coefficients. The least absolute
shrinkage and selection operator (LASSO) shrinks the coefficients of the less important explanatory
variables towards zero and hence performs variable selection [13,22]. The LASSO can be treated as a
generalization of linear regression, where instead of minimizing only the residual sum of squares (RSS),
the sum of RSS and a linear penalty function of the ’s is minimized:
n
pr = min (RSS + ) ||ﬁ|1}—m;n{Rss+A2|/si|}, (14)
i=1
where A > 0 is a tuning (or regularization) parameter. Note that for A = 0, we get the standard least
squares estimator, for A — oo, all 3;’s tend to zero, while for intermediate values of A, there is a balance
between minimizing the RSS and shrinking the coefficients.

Selecting a ‘good” value for A is critical. It is, however, a complex problem [8,11,17]. Because of a
relatively short dataset, we are not able to reselect A based on model performance in a validation period.
Instead, we have decided to use cross-validation. It can be effectively applied to select the tuning
parameter ex-ante, unfortunately at a cost of increased computational complexity. The procedure is
discussed in more detail in Section 5.2.

3.4. Forecast Averaging

Combining forecasts in order to obtain more precise and robust predictions is a technique known
both in the electricity price forecasting literature [14] and in forecasting in general [23]. Here, we use
an arithmetic average of two predictions — obtained from the LASSO-estimated model (labeled Z) and
the naive forecast:

1 —dh 1 |
ens(Z) = 5 ID3; + 5 naive!, (15)
The motivation for using the arithmetic mean is twofold. Firstly, it is the simplest averaging scheme,
requiring no additional calibration. Secondly, it is hard to beat by ‘more sophisticated” approaches [24].

4. Results

4.1. Forecast Evaluation

The forecasting accuracy is assessed in terms of two error measures: the Mean Absolute Error
(MAE) and the Root Mean Squared Error (RMSE). The scores are reported for the full out-of-sample test
period of D = 852 days, i.e., 31.12.2015 to 30.04.2018, see Figure 1, jointly for all hours of the day:

1

122 D 24, .12
MAE:mdgh;‘ez‘ and RMSE = @d;h;‘ez ,

(16)



212

213

214

215

216

Version February 2, 2020 submitted to Energies 9of 15

Table 1. MAE and RMSE errors for all 852 days of the out-of-sample test period, see Figure 1. The upper
part of the table reports on the results obtained for models which use back-transformation (4), while
the lower that use back-transformation (3). Columns labeled Model refer to the models themselves,
while those labeled ens(Model) to ensembles with the naive benchmark, as defined in Eqn. (15). Errors
smaller than those of the naive benchmark are emphasized in bold.

Back- Model MAE RMSE
transformation class Model ens(Model) Model ens(Model)
naive 3.774 — 5.999 —
baseline 4.433 3.866 7.178 6.246
With correction w/exogenous  4.234 3.720 6.956 6.040
proposed in [1], w/partial ID  3.771 3.702 6.052 5.903
see Eqn. (4) full 3.710 3.630 6.072 5.841
full-diff 3.723 3.700 5.900 5.906
baseline 4.427 3.868 7.294 6.285
As originally w/exogenous  4.242 3.724 7.069 6.086
introduced in [16], w/partial ID 3.807 3.708 6.182 5.942
see Eqn. (3) full 3.733 3.635 6.178 5.877
full-diff 3.699 3.710 5.894 5.923

where c‘,’é’h — D3 — 1D3"" is the prediction error for model Z, for day d and hour /. Recall, that the
RMSE is the optimal measure for least square problems, whereas the MAE is more robust to outliers
[22]. The resulting aggregate MAE and RMSE scores can be used to provide a ranking of the models,
but do not allow to draw statistically significant conclusions on the relative performance. Therefore,
we use the Giacomini and White [15] test for conditional predictive ability (CPA), which can be regarded
as a generalization of the commonly used Diebold-Mariano test for unconditional predictive ability [2].
First, for each pair of models, we compute the so-called multivariate loss differential series [16,18]:

Afla,B = Hgfop - Hgng, (17)

where [|€4]], = (CfL, 167"
for model Z. Then, we calculate the p-values of the CPA test with null Hj : « = 0 in the regression:
Aflq B= a/X31 4 ¢ where X9~ contains information for day d — 1, i.e., a constant and lags of A’i/B.

P)1/P is the p-th norm of the 24-dimensional vector of out-of-sample errors

4.2. MAE and RMSE Errors

In Table 1 we report the MAE and RMSE metrics for all considered models and their ensembles
with the naive benchmark, as defined in Eqn. (15). In Figure 4 we additionally visualize the set of
results corresponding to back-transformation (4), reflecting the upper part of Table 1. Several important
conclusions can be drawn:

e In terms of the MAE, three models outperform the naive benchmark even without averaging
forecasts. However, only the full-diff approach manages to beat the benchmark in terms of the
RMSE, see the values emphasized in bold in Table 1 in columns labeled Model.

e  All baseline model extensions yield lower errors than the baseline model itself, both in terms of
the MAE and RMSE.

e  The full model outperforms the model with partial ID prices, which suggests that using the
exogenous variables discussed in Section 2.2 improves forecast accuracy.

e  On average, back-transformation (4) proposed by Narajewski and Ziel [1] (the upper part of Table
1) performs slightly better than the originally introduced one (the lower part of Table 1). For this
reason, in what follows we only discuss the results of back-transformation (4).

e  Apart from the full-diff model, every other model performs better when its forecasts are averaged
using Eqn. (15). Compare the columns labeled Model and ens(Model) in Table 1.
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I Model
1 Ensemble

4.25 1
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MAE

3.75 1
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full-diff

baseline w/exogenous w/partial ID

RMSE
=
o
=)
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Figure 4. Bar plots illustrating the MAE (top) and RMSE (bottom) errors reported in the upper part
of Table 1, i.e., for the naive benchmark and models that utilize back-transformation (4). The brown
dashed lines correspond to the benchmark, the solid bars represent the individual models and the

dotted bars the corresponding ensembles.

The improvements from averaging forecasts are much higher (ca. 12-14%) for models that do not
use the naive benchmark as a regressor. However, what is surprising, the gains are noticeable (ca.
2-4%) even for models which include this explanatory variable. Apparently, the LASSO scheme
does not put enough weight to this variable. Setting B22; = 0 in the full-diff model helps, but
does not solve the problem completely. We return to this issue in Section 4.4.

4.3. Conditional Predictive Ability

We perform the Giacomini and White [15] test of conditional predictive ability (CPA) to check

whether the differences in forecasting accuracy are statistically significant. We conduct the test only for
the naive benchmark and models that utilize back-transformation (4). The p-values of the pairwise
comparisons are visualized in Figure 5. We can see that:

Nuaive forecasts can be significantly outperformed by predictions of models that include partial ID
information and exogenous variables (full and full-diff models) without averaging, and by most
of models after ensembling.

Forecasts of the baseline model are significantly outperformed by those of any other
LASSO-estimated model.

For all considered models, ensembling significantly improves the accuracy in terms of the linear
€eITorS.
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Figure 5. Results of the conditional predictive ability (CPA) test of Giacomini and White [15] for the
linear (left) and quadratic (right) errors. We use a heat map to indicate the range of the p-values — the
closer they are to zero (— dark green) the more significant is the difference between the forecasts of a
model on the X-axis (better) and the forecasts of a model on the Y-axis (worse).

o  Forecasts of the ens(full) model significantly outperform those of any other model, both in terms
of the linear and quadratic errors.

4.4. Why Does Ensembling Improve the Results?

As the above reported results indicate, the ensemble is in most cases able to outperform both
individual forecasts. However, the simple averaging scheme proposed in Eqn. (15) might not be the
optimal for this task. Hence, in this Section we consider a more general formula:

——dh o ih
ens(Z) = w) -ID37 + w - naive™”,

(1- (18)

where w is the weight assigned to the naive forecast. In Figure 6 we depict the MAE of ensemble (18)
as a function of w for the full model with back-transformation (4). The MAE curve is convex with a
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MAE
w
b
S
o

3.675 - .
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Figure 6. The MAE errors of ensembles created using Eqn. (18) that utilize the full model with
back-transformation (4), as a function of the weight assigned to the naive benchmark.
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Table 2. The MAE errors in three price regimes (from top to bottom): the highest 2.5%, the middle 50%
and the lowest 2.5% observations in the out-of-sample test period. The LASSO model used is the full
model with back-transformation (4).

Regime Full model Naive benchmark Ensemble

High 12.418 11.938 12.025
Middle 2.675 2.795 2.631
Low 13.957 12.352 12.859

minimum at ca. w = 45%. However, the value for w = 50%, i.e., the simple mean used in the study, is
very close to the optimum.

The reason behind this shape is the characteristic of LASSO forecasts, estimated on long calibration
windows. Specifically, the model is trained to generalize well, and such a behavior is reinforced by the
fact that there are only a few spikes in the calibration window. As such, the model is able to better
predict prices at the typically observed levels at the cost of underestimating spikes (both positive and
negative), see Table 2. Therefore the ensemble (regardless of the weights) balances the generalization
of the LASSO forecasts with the ability to quickly adapt to non-recurring phenomena of the naive
benchmark.

5. Discussion and Conclusions

The motivation for this study was a claim made by Narajewski and Ziel [1], that the German
intraday, continuous-time market for hourly products was weak-form efficient, i.e., that the best
predictor for the ID3-Price index was the most recent transaction price. Performing a comprehensive
forecasting exercise involving parameter-rich regression-type models with four types of fundamental
variables as inputs, we have been able to challenge their claim and show that we can significantly
outperform the naive forecast by combining it with a prediction of a LASSO-estimated model. To keep
the empirical part of the paper concise, we have opted for omitting some of the considerations. Let us
now briefly discuss them.

5.1. The Moment of Forecasting the ID3-Price Index

After consulting with practitioners, we have decided to focus on a forecasting scheme used by
Uniejewski et al. [10], where the predictions are made four hours before delivery. This means, that a
trader has an hour to make the decisions and build a long or short position before the ID3 transaction
window opens three hours before delivery. However, to check whether also the Naive. MR1 = 3.251Df)lf£‘5
benchmark of Narajewski and Ziel [1] can be outperformed, we have recalculated our models in their
setting. Naturally, the Naive.MR1 is harder to beat than our naive model, because it uses more recent
transaction data. Yet, the relative performance vs. the benchmark was qualitatively the same as
reported in Section 4.

5.2. Selecting the LASSO Regularization Parameter

For the choice of the regularization parameter, we have resorted to using an automated cross
validation (CV) technique. More precisely, the applied CV procedure consisted of three folds with a
dense logarithmic grid of 50 A values spanning six orders of magnitude. Two thirds of the calibration
sample was used for training the models estimated with different A’s, the remaining one third for
testing them. This resulted in a significantly increased computational burden, due to the need of testing
multiple models for multiple A’s, but also allowed for an ex-ante choice of the regularization parameter.
We have also performed a limited numerical experiment to compare with the results obtained for the
best ex-post selected A. As it turned out, the difference in the MAE and RMSE errors was less than 0.5%.
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5.3. The Impact of Intraday Updates of the Fundamentals

We have also tried to assess the impact of using more recent forecasts of the system-wide load,
wind power generation, photovoltaic generation and balancing volumes. We have measured the
predictive performance of our models under the assumption that we know future values of the
exogenous variables until the end of the target day. With such ‘perfect forecasts” we have been able
to additionally reduce the forecasting error by more than 2%. This result emphasizes how important
in short-term forecasting is the availability of more frequently updated forecasts of the exogenous
variables.

5.4. Model Size

As mentioned above, the LASSO procedure allows for an efficient estimation of parameter-rich
models. However, the quality of the obtained estimates can differ for different sizes of the regression
model. Having only ca. 360 observations in the calibration window, we may obtain worse forecasts if
we consider dozens or hundreds of redundant variables in the model. The full model defined by Eqn.
(12) includes only ca. 200 potential predictors. Interestingly it outperforms by ca. 0.6% a richer model
with more than 800 variables (the same information sources, but more past observations). Therefore
we advise to use expert knowledge and/or back-testing to eliminate non-informative predictors before
running the LASSO.

5.5. Directions for Future Research

Given that the literature on forecasting prices in European intraday power markets is still very
scarce, our study is a step forward towards understanding the impact of using recent transaction
data and exogenous variables on the predictive performance. Our study can be further expanded
in several directions. In particular, we report the results for only one VST (for more suggestions see
[16]) and without decomposing the data into a long-term seasonal component and the remaining
stochastic part (for the importance of doing this see, e.g., [25,26]). Furthermore, we have focused on
point forecasting, ignoring the full predictive distribution [7,27] or — what may be even more important
in continuous-time intraday markets — the trajectories [12,28]. We have restricted ourselves to using
regression-based models, however, machine learning techniques could be used in this context as well
[11,20,21,29], naturally at the cost of an increased computational burden. Finally, recall from Section
4.4, that the ensemble we use balances the generalization of the LASSO forecasts with the ability to
quickly adapt to non-recurring phenomena of the naive benchmark. A potentially viable alternative
would be to use the approach introduced by Hubicka et al. [30], which averages forecasts of a given
model across calibration windows of different length.
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