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Abstract: Recent studies suggest that decomposing a series of electricity spot prices into a1

trend-seasonal and a stochastic component, modeling them independently and then combining2

their forecasts, can yield more accurate predictions than an approach in which the same parsimonious3

regression or neural network-based model is calibrated to the prices themselves. Here, we show that4

significant accuracy gains can be achieved also in the case of parameter-rich models estimated via the5

least absolute shrinkage and selection operator (LASSO). Moreover, we provide insights as to the order of6

applying seasonal decomposition and variance stabilizing transformations before model calibration,7

and propose two well-performing forecast averaging schemes based on different approaches to8

modeling the long-term seasonal component.9

Keywords: electricity price forecasting; day-ahead market; LASSO; long-term seasonal component;10

variance stabilizing transformation; forecast averaging11

1. Introduction12

The trend-seasonal pattern of electricity spot prices, also known as the long-term seasonal component13

(LTSC), has always attracted the attention of energy analysts [1–7]. Particularly, when modeling14

average daily prices in the medium- or the long-term. On the other hand, the short-term electricity15

price forecasting (EPF) literature has generally ignored it and considered models with only intra-day16

and intra-week periodicities, as the LTSC was believed to add unnecessary complexity. Only17

recently, Nowotarski and Weron [8] have introduced the seasonal component (SC) approach and the18

seasonal component autoregressive (SCAR) models that decompose the electricity spot price series into a19

trend-seasonal and a stochastic component, predict them independently and combine their day-ahead20

forecasts. The seasonal component approach works well for autoregressive (AR) [7,9] as well as21

non-linear autoregressive (NARX) neural network-type models [10], in the context of point and22

probabilistic predictions [11]. However, the studies published to date may be criticized for utilizing23

only parsimonious structures with a relatively small number of explanatory variables or features.24

And these are known to underperform, when compared to parameter-rich models with hundreds25

of regressors estimated via the least absolute shrinkage and selection operator (LASSO) [12–16]. To our26

best knowledge, only two studies have treated the LTSC in the context of LASSO-estimated models27

[17,18]. However, no comparisons have been made between different variants of the LTSC or with28

analogous models that do not utilize seasonal decomposition. An open question remains whether the29

SC approach is also beneficial in the case of parameter-rich LASSO-estimated models and to what30

extent.31

To this end, we perform an extensive empirical study which involves:32
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• 6-year-long electricity price and fundamental variables time series from two distinct power33

markets – Nord Pool and PJM Interconnection, providing two 3-year-long test periods of34

hourly-resolution.35

• Two commonly used approaches to modeling the LTSC of electricity price series – one based on36

wavelet smoothing [2–5,7] and one on the Hodrick-Prescott (HP) filter [4,10,19,20].37

• A parameter-rich, LASSO-estimated autoregressive model with nearly 130 regressors, after [21]38

called the LEAR model.39

• The area hyperbolic sine (asinh) variance stabilizing transformation (VST) [22,23], which has been40

found to perform well when negative or close to zero electricity prices are analyzed [15,24–26].41

• Two methods of combining point forecasts – one that selects the best combination of a pool of42

models (dubbed Best Combination, BC) and one inspired by Bayesian Model Averaging (BMA)43

[27]. The latter weighs combinations by the inverse (of the) root mean squared error (iRMSE; similarly44

as in [28–30]), instead of the posterior probabilities originally proposed in [27]. For notational45

convenience, we refer to it as BMA.46

• Model validation in terms of the robust relative mean absolute errors (rMAE) and relative root mean47

squared errors (rRMSE) [21,31], and the Giacomini and White [32] test for significant differences in48

conditional predictive ability (CPA).49

Since we utilize both seasonal decomposition (via the HP or the wavelet filter) and variance50

stabilization, a question arises about the order in which they should be applied. In some studies, the51

VST comes first [2,4,8–11], whereas in other seasonal decomposition [18]. Not having found clear52

recommendations in the literature, we compare both approaches.53

The remainder of the paper is structured as follows. In Section 2 we briefly present the datasets.54

Then, in Section 3, we describe the methodology: the forecasting framework, the asinh transformation,55

seasonal decomposition, a parsimonious autoregressive model used as a benchmark, the LEAR model,56

and the two combination schemes. In Section 4 we measure forecast accuracy in terms of rMAE and57

rRMSE, evaluate conditional predictive ability and comment on computational complexity of the58

proposed methods. Finally, in Section 5, we wrap up the results and conclude.59

2. Datasets60

We evaluate the considered models using datasets from two major power markets. The first61

one is Nord Pool, a renewable energy sources dominated market in the Northern Europe, exhibiting62

long-term, weather-dependent fluctuations in price levels. The second is PJM Interconnection, the63

world’s largest competitive wholesale electricity market covering Northeastern United States, with a64

coal-gas-nuclear generation mix.65

The Nord Pool (NP) dataset, depicted in Fig. 1, comprises three time series at hourly resolution:66

day-ahead market system prices in EUR/MWh, day-ahead system load forecasts (called consumption67

prognosis) for four Nordic countries (Denmark, Finland, Norway and Sweden), and day-ahead wind68

power generation forecasts for Denmark. The data is freely available on the Nord Pool website69

www.nordpoolspot.com. The PJM dataset, depicted in Fig. 2, also comprises three time series at hourly70

resolution: day-ahead market prices in the Commonwealth Edison (COMED; located in the state71

of Illinois) zone in USD/MWh and two day-ahead load forecasts series – the system load and the72

COMED zonal load. The data is freely available on the PJM website www.pjm.com. Both datasets span73

the same 6-year-long time period – from 1 January 2013 to 24 December 2018 (exactly 2184 = 6 · 36474

days or 52 416 = 6 · 364 · 24 hours). Note, that while the NP price is more volatile in the 3-year-long75

evaluation window than in the model selection window, the PJM price exhibits the opposite behavior.76

This will allow us to compare the models under different market conditions. Also note, that the same77

datasets were used in [21].78

www.nordpoolspot.com
www.pjm.com
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Figure 1. Day-ahead system prices in the Nord Pool electricity market (NP; top) and two forward
looking series: day-ahead system load forecasts (middle) and day-ahead wind power generation
forecasts for Denmark (bottom). The vertical dashed lines indicate the beginnings of the model selection
(31.12.2013) and model evaluation (29.12.2015) windows.

3. Methodology79

We implement the multivariate modeling framework, as defined in [15], in which the predictions80

are performed separately for each hour. To represent our variables, we use ’day × hour’ matrix-like81

structures. The day-ahead forecasts p̂d,h|d−1 ≡ p̂d,h of the electricity price pd,h for day d and hour h are82

computed on day d− 1 using all the information known up to that point in time. We utilize a rolling83

window scheme, i.e., our models are calibrated to data in a 364-day-long window, and once the 2484

forecasts for all hours of the next day are made, the window is rolled forward 24 h. Then, the models85

are calibrated again, and forecasts are computed for the next 24 h. This procedure continues until the86

predictions for the last day in the sample are made.87

Our models involve day-ahead electricity prices and two exogenous variables, see Sec. 2 and88

Figs. 1-2. All three time series undergo a variance stabilizing transformation (VST; see Sec. 3.1 below)89

and seasonal decomposition (see Sec. 3.2 below) prior to model calibration; we consider two orders90

of applying these transformations – VST first then seasonal decomposition or vice versa. The only91

exceptions are the benchmark models for which seasonal decomposition is not performed. Although92

we use a multivariate modelling framework, both transformations are carried out in the calibration93

window for the original time series at hourly resolution, just like in [8]. Moreover, since the forecasts94

of the exogenous variables are known one day in advance, in their case, seasonal decomposition and95

variance stabilization are applied to a window that is one day longer, i.e., which covers 365 days and96

includes the day for which the price forecasts are made.97
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Figure 2. Day-ahead market prices in the Commonwealth Edison zone (COMED; top) and two
forward looking series: the day-ahead system (middle) and COMED zone (bottom) load forecasts. The
vertical dashed lines indicate the beginnings of the model selection (31.12.2013) and model evaluation
(29.12.2015) windows.

When it comes to forecasting, like in [8,10], the LTSC of the price time series is assumed to persist98

into the future (see Sec. 3.2 below), whereas the stochastic component is predicted based on two models99

with an autoregressive structure. The first one is a parsimonious ordinary least squares (OLS) estimated100

model, built on some prior knowledge of experts (see Sec. 3.3 below), whereas the second one is a101

parameter-rich LASSO-estimated model (see Sec. 3.4 below).102

Finally, in Section 3.5, we propose two methods of averaging/selecting forecasts. We construct our103

combined predictions based on performance in a 2-year-long model selection (or validation) window104

and compare them – like all considered models – in the 3-year-long evaluation (or test) window, see105

Figs. 1 and 2.106

3.1. Data Transformation107

A number of transformations can be used to reduce the variation in data and allow to handle108

close to zero or negative electricity prices. Here, following [15,18,22], we resort to the area hyperbolic109

sine (asinh), which is a simple but well performing variance stabilizing transformation (VST). Before110

applying it, we normalize each series xd,h, i.e., prices or load/wind forecasts, using its median Medτ111

and median absolute deviation MADτ in the calibration window τ:112

yd,h =
1

z0.75

xd,h −Medτ

MADτ
, (1)
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where z0.75 is the 75th percentile of the standard normal distribution and ensures asymptotically113

normal consistency to the standard deviation. Such a normalization is more robust to outliers than the114

one based on the mean and the standard deviation, and thus it is preferred for spiky data [23]. Having115

normalized our variables, we apply the VST:116

zd,h = asinh(yd,h) = log
(

yd,h +
√

y2
d,h + 1

)
. (2)

The forecasts are obtained for models calibrated to the VST-transformed series, after applying the117

inverse transformation:118

xd,h =
MADτ

z0.75
sinh (zd,h) + Medτ , (3)

where sinh is the hyperbolic sine. Since the latter is a nonlinear function, given random variable X,119

Esinh(X) does not have to equal sinh(EX). Hence, from the probabilistic point of view, Eq. (3) is120

not the correct inverse transformation. Although this problem is generally ignored in the literature,121

Narajewski and Ziel [33] argue that using the correct transformation yields better forecasts. On the122

other hand, when the forecasts are averaged, the differences between the two approaches seem to123

vanish [34]. Since we eventually consider forecast combinations, to keep it simple, we use Eq. (3) as124

the inverse transformation.125

3.2. Seasonal Decomposition126

Seasonal decomposition is a term that generally refers to representing a signal as a sum or127

a product of a periodic component and the remaining variability (also known as the stochastic128

component). Recent studies have shown that seasonal decomposition of day-ahead prices and separate129

treatment of the seasonal and stochastic components can result in more accurate forecasts generated by130

OLS-estimated [10,11] as well as LASSO-estimated [18] models. The approach proposed by Nowotarski131

and Weron [8] relies on an additive decomposition that splits the original time series, Yt, into the132

long-term trend-seasonal component (LTSC), Tt, and the remaining stochastic component with short-term133

periodicity, Xt:134

Yt = Tt + Xt. (4)

In our study, depending on the order of applying seasonal decomposition and the variance stabilizing135

transformation, Yt may denote asinh-transformed or raw data. In the latter case, the VST is applied136

only to Xt. Both components are modeled independently and their predictions are combined to yield137

price forecasts. Like in [8–11], we consider persistent forecasts, i.e., assume that the last 24 hourly138

observations of the LTSC will repeat the next day:139

T̂d∗+1,h = Td∗ ,h, (5)

where d∗ is the last day in the calibration window and the single and double time indexes satisfy140

t = 24d + h.141

We consider two well-performing methods of extracting and modeling the LTSC – one based142

on wavelet smoothing [2–5,7] and one on the Hodrick-Prescott (HP) filter [4,10,19,20]. In wavelet143

smoothing [1,35], the original time series is decomposed using the discrete wavelet transform into144

a sum of an approximation series capturing the general trend, Sk, and a number of detail series, Dk,145

representing higher-frequency components: Sk + Dk + Dk−1 + ... + D1, where k is the smoothing level.146

The LTSC is then approximated by Sk. We consider the Daubechies family of wavelets, which is147

frequently used in EPF studies [8–11,36–39]. More precisely, we utilize Daubechies wavelets of order 4148

(denoted by ‘db4’), and the smoothing level k ranges from 6 to 14. See the left panels in Fig. 3 for an149

illustration.150
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Figure 3. Illustration of the long-term trend-seasonal component (LTSC) based on wavelets S6, S9 and
S14 (left column) and HP filters with λ = 105, 109, and 1013 (right column) fitted to Nord Pool prices in
the initial calibration window, see Fig. 1. Only the last 8 weeks are displayed.

While wavelet smoothing removes layers of details, D1, D2, etc., the Hodrick-Prescott [40] filter151

simply returns Tt which minimizes squared deviations from Yt (first term) and squared fluctuations of152

the smoothed series itself (second term):153

min
Tt

{
τ

∑
t=t0

(Yt − Tt)
2 + λ

τ−1

∑
t=t0+1

[
(Tt+1 − Tt)− (Tt − Tt−1)

]2
}

, (6)

where t0 and τ are respectively the beginning and the end of the calibration window in the single time154

index notation, and λ is the smoothing parameter. Here, we consider nine values of the latter: λ = 10k
155

with k = 5, 6, ..., 13. The larger the λ, the smoother the resulting series is, see the right panels in Fig. 3.156

3.3. The OLS-estimated Benchmark157

As a benchmark, we consider the well-performing expertDoW,nl model proposed in [15], extended158

to include two exogenous variables. We denote it by ARX to reflect its autoregressive structure with159

exogenous variables. Within this model, the transformed price on day d and hour h is given by:160

Xd,h = βh,1Xd−1,h + βh,2Xd−2,h + βh,3Xd−7,h︸ ︷︷ ︸
autoregressive effects

+ βh,4Xd−1,min + βh,5Xd−1,max︸ ︷︷ ︸
non-linear effects

+ βh,6Xd−1,24︸ ︷︷ ︸
midnight value

+ βh,7C1,d,h + βh,8C2,d,h︸ ︷︷ ︸
exogenous variables

+
7

∑
i=1

βh,8+iDi,d︸ ︷︷ ︸
weekday dummies

+εd,h,
(7)

where Xd−1,min and Xd−1,max are the previous day’s minimum and maximum observations, Xd−1,24 is161

the previous day’s midnight value, i.e., the last known observation in the day-ahead market, C1,d,h162

and C2,d,h are two exogenous variables (here: day-ahead forecasts of price drivers relevant for a given163
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dataset, see Section 2), D1,d, ..., D7,d are weekday dummies, and εd,h is the noise term. The parameters164

of the model are estimated using OLS, independently for each hour.165

3.4. The LEAR Model166

The structure of the main predictive model considered in this study is a natural extension of Eq.167

(7) that includes all 24 hourly observations for the considered three days, i.e., yesterday, two days ago,168

and a week ago, and predictions of the exogenous variables for all 24 hours of the day:169

Xd,h =
24

∑
i=1

(βh,iXd−1,i + βh,24+iXd−2,i + βh,48+iXd−7,i) + βh,73Xd−1,min + βh,74Xd−1,max

+
24

∑
i=1

(βh,74+iC1,d,i + βh,98+iC2,d,i) +
7

∑
i=1

βh,122+iDi,d + εd,h.

(8)

We estimate the 129 regressors via the least absolute shrinkage and selection operator (LASSO) [41]:170

β̂h = arg min
β

(
RSS + α

129

∑
i=1

βh,i

)
, (9)

where RSS is the residual sum of squares and α ≥ 0 is a tuning parameter. For α = 0 we get the171

standard OLS estimator, for large values of α all coefficients become zeros, while for intermediate172

α’s the LASSO shrinks some of them to zero and thus performs variable selection. There are several173

techniques to optimize the tuning parameter [42]. Here, we use cross-validation with 7 folds since the174

number of observations in the calibration window is divisible by 7. Following [21], we refer to this175

LASSO-estimated autoregressive model as the LEAR model although the LEAR model defined in [21] is176

a richer structure (it includes nearly 250 regressors, most notably lagged fundamental variables).177

3.5. Forecast Averaging Schemes178

The best-performing seasonal decomposition is not known in advance. To address this problem179

we utilize forecast averaging [28–30]. As suggested in [8], we generate a pool of forecasts from a180

single model (here: ARX or LEAR) calibrated to data decomposed with different filters (either wavelet-181

or HP-based) and combine them into a single value. We consider two methods of combining point182

forecasts – one that selects the best combination of a pool of models and one inspired by Bayesian183

Model Averaging [27].184

Moreover, since our results (see Section 4) do not provide a clear indication for the optimal order185

of applying transformations – seasonal decomposition first and variance stabilization second, i.e.,186

VST[SD(·)], or variance stabilization first and seasonal decomposition second, i.e., and SD[VST(·)]187

– we also consider combining forecasts from both approaches. Overall, the combined predictions188

are constructed from individual forecasts: either 18 wavelet-based (9 smoothing levels and two189

orders of applying transformations) or 18 HP filter-based (9 values of λ and two orders of applying190

transformations).191

3.5.1. Best Combination192

The simpler averaging scheme selects the best performing combination of a pool of models.193

Hence, we refer to it as the Best Combination and denote by BC. Overall, given 18 individual forecasts194

(→ columns in the left rectangle in Fig. 4), there are 218 − 1 possible combinations (→ rows in the same195

rectangle). The first combination is just the forecast for the first LTSC, the second is the forecast for the196

second LTSC, ..., the 19th is the combination of forecasts for the first and second LTSCs, the 20th is the197

combination of forecasts for the first and third LTSCs, ..., and the last is the combination of forecasts for198

all LTSCs.199
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Figure 4. Illustration of the BC and BMA-type averaging schemes. For both approaches all possible
combinations (218 − 1 rows in the left rectangle) of individual forecasts for the different variants
of the LTSC (2× 9 = 18 columns representing two orders of applying transformations, VST[SD(·)]
and SD[VST(·)], and 9 wavelet levels or 9 HP filter’s λs; see also Table 1) are generated. Then, the
predictions of all models for a given combination are averaged using the arithmetic mean and either
the best-performing combination in terms of RMSE in the model selection window is selected (→ BC)
or all combined forecasts are iRMSE-weighted (→ BMA).

In each row the predictions are averaged using the arithmetic mean. Then, in order to choose200

the best-performing combination, we calculate the root mean squared error (RMSE) for all considered201

combinations of forecasts in the model selection window (i.e., the 2-year period directly preceding the202

3-year test period, see Figs. 1 and 2):203

RMSE =

√√√√ 1
728 · 24

1092

∑
d=365

24

∑
h=1

(pd,h − p̂c
d,h)

2, (10)

where p̂c
d,h is one of the 218 − 1 combined forecasts and pd,h is the actual price for day d and hour h. We204

choose the combination that returns the lowest RMSE, see the green square in Fig. 4. This combination205

is eventually evaluated in the model evaluation window (i.e., the 3-year test period) and compared to206

other combined and individual models.207

In Table 1 we present the five best-preforming combinations in the model selection window208

obtained for both datasets and the LEAR model with wavelet-based filtering. Squares indicate209

individual predictions that are averaged in a given combination. For instance, for the NP dataset210

the best combination is composed of forecasts for three LTSCs obtained by first applying seasonal211

decomposition, then the VST: S8, S10 and S13, and one LTSC obtained by first applying the VST,212

then seasonal decomposition: S10. The RMSE of this combination in the model selection window is213

2.2984, nearly the same as that of the second best combination. The last row in each part of the table214

represents averaging over all individual forecasts; for NP the RMSE of 2.3485 is ca. 2% higher than for215

the best-performing combination.216



Version March 28, 2021 submitted to Energies 9 of 16

Table 1. Root mean squared errors (RMSE) and their inverse values (iRMSE) calculated in the 2-year
model selection window (see Figs. 1 and 2) for five best-performing combined forecasts obtained from
the LEAR models with wavelet-based filtering. Squares indicate individual forecasts that are averaged
in a given combination. For comparison, the last row represents averaging over all individual forecasts.
Individual models where seasonal decomposition is executed first, then the VST is applied, are labeled
by VST[SD(·)], whereas models with the opposite order are labeled by SD[VST(·)].

NP
VST[SD(·)] SD[VST(·)]

S6 S7 S8 S9 S10 S11 S12 S13 S14 S6 S7 S8 S9 S10 S11 S12 S13 S14 RMSE iRMSE
1 � � � � 2.2984 0.4351
2 � � � 2.2984 0.4351
3 � � � 2.2985 0.4351
4 � � � � 2.2991 0.4350
5 � � � � 2.3002 0.4347

� � � � � � � � � � � � � � � � � � 2.3485 0.4258

PJM
VST[SD(·)] SD[VST(·)]

S6 S7 S8 S9 S10 S11 S12 S13 S14 S6 S7 S8 S9 S10 S11 S12 S13 S14 RMSE iRMSE
1 � � � 19.0596 0.0525
2 � � � 19.1281 0.0523
3 � � � 19.1423 0.0522
4 � � � 19.1633 0.0522
5 � � � � � 19.2004 0.0521

� � � � � � � � � � � � � � � � � � 20.4995 0.0488

3.5.2. BMA-type Averaging217

The more complex averaging scheme, instead of selecting one forecast combination out of 218 − 1
possibilities, weighs all combinations:

p̂BMA
d,h =

218−1

∑
i=1

wi p̂
c,i
d,h, (11)

where p̂c,i
d,h is the ith of the 218 − 1 combined forecasts. The weights are computed based on past

performance:

wi =
iRMSEi

∑218−1
i=1 iRMSEi

, (12)

where iRMSEi is the inverse of the root mean squared error of the ith combination in Eq. (10), see218

Fig. 4. In the last column of Table 1 we report iRMSE values for the five best-preforming combinations219

obtained for both datasets and the LEAR model with wavelet-based filtering. As can be seen, due to220

small differences in RMSE values, the weights are nearly identical for the top performing combinations221

and very similar to the weight for the average across all individual forecasts.222

This idea is similar in spirit to Bayesian Model Averaging [27], which weighs combinations by223

posterior probabilities. The latter has not performed very well in an extensive EPF study [30], hence224

our idea to replace posterior probabilities by iRMSE weights, similarly as in [28,29]. Although our225

approach is only inspired by Bayesian Model Averaging, for simplicity of notation we denote it by226

BMA.227



Version March 28, 2021 submitted to Energies 10 of 16

6 8 10 12 14

0.6

0.65

0.7

0.75

0.8

0.85

Sj

rM
A

E

ARX

6 8 10 12 14
Sj

LEAR

105 107 109 1011 1013

HPλ

ARX

105 107 109 1011 1013

HPλ

LEAR

VST[SD(·)]
SD[VST(·)]
noLTSC
BC
BMA

6 8 10 12 140.6

0.65

0.7

0.75

0.8

0.85

Sj

rR
M

SE

ARX

6 8 10 12 14
Sj

LEAR

105 107 109 1011 1013

HPλ

ARX

105 107 109 1011 1013

HPλ

LEAR

Figure 5. Relative mean absolute errors (rMAE; top row) and relative root mean squared errors (rRMSE;
bottom row) for individual and combined forecasts obtained for the ARX (left panels) and LEAR (right
panels) models and the NP dataset. Circles represent the performance of individual models where
seasonal decomposition is executed first, then the VST is applied, while triangles the opposite order.
Models without seasonal decomposition are indicated by the black solid line (labeled noLTSC), whereas
the combined models by colored solid lines with markers at the ends.

4. Results228

4.1. Forecast Evaluation229

Forecast accuracy is assessed in the 3-year or 3 · 364 = 1092-day model evaluation window, using230

two error measures. Following the recommendations put forward in [21], both are relative metrics.231

This allows us to compare model performance across different datasets. The relative mean absolute error232

(rMAE) and the relative root mean squared error (rRMSE) are defined as:233

rMAE =
∑2184

d=1093 ∑24
h=1

∣∣pd,h − p̂d,h
∣∣

∑2184
d=1093 ∑24

h=1

∣∣∣pd,h − p̂naive
d,h

∣∣∣ , rRMSE =

√
∑2184

d=1093 ∑24
h=1 (pd,h − p̂d,h)

2√
∑2184

d=1093 ∑24
h=1

(
pd,h − p̂naive

d,h

)2
, (13)

where pd,h denotes the actual (observed) price for day d and hour h, p̂d,h is the corresponding prediction234

obtained using the model under the evaluation, and p̂naive
d,h is a similar-day prediction [43]:235

p̂naive
d,h =

{
pd−7,h for Monday, Saturday, and Sunday,

pd−1,h otherwise.
(14)

Results for the individual and combined ARX and LEAR models for both datasets are presented in236

Figs. 5 and 6. They all lead to similar conclusions.237
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Figure 6. Relative mean absolute errors (rMAE; top row) and relative root mean squared errors (rRMSE;
bottom row) for individual and combined forecasts obtained for the ARX (left panels) and LEAR (right
panels) models and the PJM dataset. Markers and line styles used are the same as in Fig. 5.

Firstly, we can see that seasonal decomposition can improve the accuracy of forecasts generated238

not only by simple autoregressive models but also by parameter-rich models with automated variable239

selection via the LASSO. More considerable improvements can be achieved in the NP market, see240

Fig. 5. Moreover, in this case, most of the individual models with seasonal decomposition return lower241

error scores than the benchmark model without it (denoted by noLTSC). For the PJM dataset, see Fig. 6,242

the improvements are smaller, and they occur more frequently for ARX models. The only problem243

with such individual models is that not all of them beat the benchmark model without seasonal244

decomposition. Thus, it is difficult to choose the optimal LTSC ex-ante.245

Secondly, there is no general answer to the question which order of applying data transformations246

performs better. It seems to depend on the considered model, market, type of the LTSC, or error247

measure. For instance, in the top row of Fig. 6, where the rMAE is presented for the PJM dataset, the248

best performing approach changes depending on the considered filtering type. For wavelet-based249

filters, it is generally more effective to apply the seasonal decomposition first, whereas for HP-based250

filters, the VST first. On the contrary, for the NP dataset and rRMSE (see the bottom row of Fig. 5), the251

performance strongly depends on the chosen parameters used to extract the LTSC, i.e., the smoothing252

level k or the smoothing parameter λ.253

To overcome these difficulties, we consider two averaging schemes, see Sec. 3.5. In Table 2, we254

collect all the error scores for the combined and the benchmark models. It turns out that for both255

datasets the BC and BMA averaging schemes always return lower rMAE and rRMSE scores than256

the benchmark model without seasonal decomposition (denoted by noLTSC). Moreover, there are257

generally only a few individual models that can outperform the combined models. Hence, we can258

conclude that forecast averaging solves the problem with the ex-ante selection of the best performing259

LTSC and order of data transformations. Furthermore, all the combined LEAR models outperform260
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Table 2. Relative mean absolute errors (rMAE) and relative root mean squared errors (rRMSE)
calculated in the model evaluation window for the combined and the baseline ARX and LEAR models.
The lowest score in a row is emphasized in bold, independently for the ARX and LEAR models,
whereas the lowest score in a row across all models has a green background.

NP
ARX LEAR

noLTSC BC BMA noLTSC BC BMA
HP 0.6615 0.6607 HP 0.6016 0.6063

rMAE 0.7817
db4 0.6626 0.6658

0.7062
db4 0.5944 0.6074

HP 0.7154 0.7190 HP 0.6424 0.6503
rRMSE 0.7541

db4 0.7321 0.7312
0.7153

db4 0.6563 0.6744

PJM
ARX LEAR

noLTSC BC BMA noLTSC BC BMA
HP 0.6761 0.6814 HP 0.6603 0.6520

rMAE 0.7273
db4 0.7263 0.7076

0.6713
db4 0.6634 0.6596

HP 0.7026 0.6988 HP 0.6879 0.6765
rRMSE 0.7343

db4 0.7236 0.7157
0.6959

db4 0.6923 0.6792

their ARX counterparts, so the use of LASSO-estimated models additionally increases the accuracy of261

the combined forecasts.262

Finally, let us compare the averaging schemes and the ways of modeling the LTSC. It turns out263

that the BMA approach returns lower errors than BC in 9 out of 16 cases. When it comes to the264

best-performing approach for extracting the LTSC, we can observe that the one based on HP filters265

yields lower error scores in all the cases except one (i.e., LEAR, BC averaging, NP market; see Table 2).266

4.2. Testing for Conditional Predictive Ability267

The obtained forecasts are also compared using the conditional predictive ability (CPA) test of268

Giacomini and White [32]. Here, following [15], we only focus on the results of the multivariate269

version of the test, which for each pair of models returns a single p-value for all 24 hours. The tests270

were conducted separately for the absolute and squared losses.271

Following [10,15,21], we present the CPA test results as chessboards with a color-coded p-value,272

where the color ranges from dark red (higher p-values) to dark green (lower p-values). A colored273

square in the chessboards indicates that the predictions of the model on the x-axis are significantly274

better than the predictions of the model on the y-axis. The greener this field is (the lower the p-value275

is) the more statistically significant the difference is. A black square means that there is no statistically276

significant difference in predictive accuracy at the 10% level.277

In Figures 7 and 8 we illustrate the results for the absolute and squared losses, respectively. As278

can be seen, the combined forecasts significantly outperform the predictions of the benchmark models279

without seasonal decomposition in 22 out of 32 cases (at the 10% level). When we consider only the280

LEAR models, the improvement is statistically significant in 11 out of 16 cases. Only for the PJM281

market (both averaging schemes for the squared losses, see Fig. 8, and LEAR BMA db4 for linear282

losses, see Fig. 7) the improvements over the benchmark are not statistically significant. Moreover,283

the outperformance of the forecasts of the combined LEAR models over their ARX counterparts is284

significant in 14 out of 16 cases. Thus, the CPA tests confirm that seasonal decomposition improves the285

accuracy of combined forecasts generated by the LASSO-estimated models.286

Regarding the method of combining forecasts. Although the BMA approach returns lower errors287

than the BC approach in 9 out of 16 cases (see Table 2), the CPA tests indicate that outperformance is288

significant only in 2 cases. On the other hand, the BC approach outperforms significantly the BMA289
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Figure 7. Results of the CPA test [32] for absolute losses. A colored square (other than black) indicates
that the predictions of the model on the x-axis are significantly better than the predictions of the model
on the y-axis, at a given significance level.

approach in 6 cases. Given that the differences in the error scores between both averaging schemes are290

small, we can recommend the simpler approach – BC averaging.291

Finally, although the combined models based on HP filters return lower error scores in almost all292

cases, the advantages of using one LTSC function over the other are not so clear from the perspective293

of the CPA test. The combined forecasts based on HP filters are significantly better than those based on294

wavelet filters only in 6 cases, at the 10% level, whereas the remaining 10 cases show no significant295

differences. Considering the 5% level and only the combined LEAR models, all the differences become296

statistically insignificant.297

4.3. Computational Complexity298

The models considered in this study are computationally feasible even in time-constrained299

scenarios. Note, that all the times reported in this subsection reflect a single-threaded task run on an300

AMD Threadripper 1950X processor.301

The average computation time per forecast day amounts to 8-9 s for the LEAR models and302

0.03-0.05 s for the ARX models. The listed times reflect the whole process, including data preprocessing,303

such as the application of the LTSC or the VST. Nevertheless, model estimation is the most304

time-consuming task. To be more precise, the ARX model without the LTSC is, on average, computed305

in 0.027 s, whereas the computation of the same model with the LTSC takes 0.03 s for db4 wavelets and306

0.05 s for HP filters. For the LEAR model, the input data impact the convergence rate. The smallest307

time in this case was measured for the model with the LTSC based on db4 wavelets – 8 s per day. On308

the other hand, for the model with the LTSC based on HP filters or without the LTSC, the computations309

took closer to 9 s.310

The averaging schemes require additional computational time. One has to consider the generation311

of forecasts to determine the best averaging scheme. Sequential computation of the set of forecasts for312

one LTSC variant and a 728-day selection window takes around 33 hours. Computing the errors of all313

218 − 1 possible combinations of the forecasts takes 101 seconds. The above operations are, however,314

done only once.315
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Figure 8. Results of the CPA test [32] for squared losses. A colored square (other than black) indicates
that the predictions of the model on the x-axis are significantly better than the predictions of the model
on the y-axis, at a given significance level.

5. Conclusions316

To address the question whether the seasonal component approach is beneficial in the case317

of parameter-rich models, we have performed an extensive empirical study which involved a318

well-performing, LASSO-estimated autoregressive (LEAR) model with nearly 130 regressors, two319

approaches to modeling the LTSC (wavelet smoothing and the Hodrick-Prescott filter), and the area320

hyperbolic sine transformation. Given that our initial results did not provide a clear indication for the321

optimal choice of the LTSC nor the optimal order of applying transformations – seasonal decomposition322

first and variance stabilization second or vice versa – we have introduced two averaging schemes.323

The first one, dubbed Best Combination (BC), selects the best combination of a pool of models. The324

second is inspired by Bayesian Model Averaging, but weighs combinations by the inverse (of the) root325

mean squared error (iRMSE), instead of the originally proposed posterior probabilities; for notational326

convenience, we refer to it as BMA.327

Our results indicate that seasonal decomposition can significantly – as measured by the conditional328

predictive ability (CPA) test – improve the accuracy of forecasts generated not only by simple329

autoregressive but also by parameter-rich models with automated variable selection via the LASSO.330

Moreover, for both datasets the averaging schemes always return lower error scores than the benchmark331

model without seasonal decomposition. At the same time, there are only a few individual models332

that can outperform the combined models. Hence, we can conclude that forecast averaging solves the333

problem with the ex-ante selection of the best performing LTSC and order of data transformations.334

Furthermore, all the combined LEAR models outperform their parsimonious ARX counterparts, so the335

use of LASSO-estimated models additionally increases the accuracy of the combined forecasts.336

Finally, although the BMA approach generally returns slightly lower errors than BC, the CPA337

tests indicate that outperformance is in most cases insignificant. Hence, we recommend the simpler338

approach – BC averaging. Interestingly, this is consistent with recommendations put forward in the339

forecasting literature, i.e., that instead of combining the full set of forecasts, it may be advantageous to340

discard the models with the worst performance [29,44].341
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