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Abstract: Recent studies suggest that decomposing a series of electricity spot prices into a
trend-seasonal and a stochastic component, modeling them independently and then combining
their forecasts, can yield more accurate predictions than an approach in which the same parsimonious
regression or neural network-based model is calibrated to the prices themselves. Here, we show that
significant accuracy gains can be achieved also in the case of parameter-rich models estimated via the
least absolute shrinkage and selection operator (LASSO). Moreover, we provide insights as to the order of
applying seasonal decomposition and variance stabilizing transformations before model calibration,
and propose two well-performing forecast averaging schemes based on different approaches to
modeling the long-term seasonal component.

Keywords: electricity price forecasting; day-ahead market; LASSO; long-term seasonal component;
variance stabilizing transformation; forecast averaging

1. Introduction

The trend-seasonal pattern of electricity spot prices, also known as the long-term seasonal component
(LTSC), has always attracted the attention of energy analysts [1-7]. Particularly, when modeling
average daily prices in the medium- or the long-term. On the other hand, the short-term electricity
price forecasting (EPF) literature has generally ignored it and considered models with only intra-day
and intra-week periodicities, as the LTSC was believed to add unnecessary complexity. Only
recently, Nowotarski and Weron [8] have introduced the seasonal component (SC) approach and the
seasonal component autoregressive (SCAR) models that decompose the electricity spot price series into a
trend-seasonal and a stochastic component, predict them independently and combine their day-ahead
forecasts. The seasonal component approach works well for autoregressive (AR) [7,9] as well as
non-linear autoregressive (NARX) neural network-type models [10], in the context of point and
probabilistic predictions [11]. However, the studies published to date may be criticized for utilizing
only parsimonious structures with a relatively small number of explanatory variables or features.
And these are known to underperform, when compared to parameter-rich models with hundreds
of regressors estimated via the least absolute shrinkage and selection operator (LASSO) [12-16]. To our
best knowledge, only two studies have treated the LTSC in the context of LASSO-estimated models
[17,18]. However, no comparisons have been made between different variants of the LTSC or with
analogous models that do not utilize seasonal decomposition. An open question remains whether the
SC approach is also beneficial in the case of parameter-rich LASSO-estimated models and to what
extent.

To this end, we perform an extensive empirical study which involves:
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e  O6-year-long electricity price and fundamental variables time series from two distinct power
markets — Nord Pool and PJM Interconnection, providing two 3-year-long test periods of
hourly-resolution.

e Two commonly used approaches to modeling the LTSC of electricity price series — one based on
wavelet smoothing [2-5,7] and one on the Hodrick-Prescott (HP) filter [4,10,19,20].

e A parameter-rich, LASSO-estimated autoregressive model with nearly 130 regressors, after [21]
called the LEAR model.

o  The area hyperbolic sine (asinh) variance stabilizing transformation (VST) [22,23], which has been
found to perform well when negative or close to zero electricity prices are analyzed [15,24-26].

e Two methods of combining point forecasts — one that selects the best combination of a pool of
models (dubbed Best Combination, BC) and one inspired by Bayesian Model Averaging (BMA)
[27]. The latter weighs combinations by the inverse (of the) root mean squared error (iRMSE; similarly
as in [28-30]), instead of the posterior probabilities originally proposed in [27]. For notational
convenience, we refer to it as BMA.

e  Model validation in terms of the robust relative mean absolute errors (tMAE) and relative root mean
squared errors ('RMSE) [21,31], and the Giacomini and White [32] test for significant differences in
conditional predictive ability (CPA).

Since we utilize both seasonal decomposition (via the HP or the wavelet filter) and variance
stabilization, a question arises about the order in which they should be applied. In some studies, the
VST comes first [2,4,8-11], whereas in other seasonal decomposition [18]. Not having found clear
recommendations in the literature, we compare both approaches.

The remainder of the paper is structured as follows. In Section 2 we briefly present the datasets.
Then, in Section 3, we describe the methodology: the forecasting framework, the asinh transformation,
seasonal decomposition, a parsimonious autoregressive model used as a benchmark, the LEAR model,
and the two combination schemes. In Section 4 we measure forecast accuracy in terms of rMAE and
rRMSE, evaluate conditional predictive ability and comment on computational complexity of the
proposed methods. Finally, in Section 5, we wrap up the results and conclude.

2. Datasets

We evaluate the considered models using datasets from two major power markets. The first
one is Nord Pool, a renewable energy sources dominated market in the Northern Europe, exhibiting
long-term, weather-dependent fluctuations in price levels. The second is PJM Interconnection, the
world’s largest competitive wholesale electricity market covering Northeastern United States, with a
coal-gas-nuclear generation mix.

The Nord Pool (NP) dataset, depicted in Fig. 1, comprises three time series at hourly resolution:
day-ahead market system prices in EUR/MWh, day-ahead system load forecasts (called consumption
prognosis) for four Nordic countries (Denmark, Finland, Norway and Sweden), and day-ahead wind
power generation forecasts for Denmark. The data is freely available on the Nord Pool website
www.nordpoolspot.com. The PJM dataset, depicted in Fig. 2, also comprises three time series at hourly
resolution: day-ahead market prices in the Commonwealth Edison (COMED; located in the state
of Illinois) zone in USD/MWh and two day-ahead load forecasts series — the system load and the
COMED zonal load. The data is freely available on the PJM website www.pjm.com. Both datasets span
the same 6-year-long time period — from 1 January 2013 to 24 December 2018 (exactly 2184 = 6 - 364
days or 52 416 = 6 - 364 - 24 hours). Note, that while the NP price is more volatile in the 3-year-long
evaluation window than in the model selection window, the PJM price exhibits the opposite behavior.
This will allow us to compare the models under different market conditions. Also note, that the same
datasets were used in [21].


www.nordpoolspot.com
www.pjm.com
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Figure 1. Day-ahead system prices in the Nord Pool electricity market (NP; top) and two forward
looking series: day-ahead system load forecasts (middle) and day-ahead wind power generation
forecasts for Denmark (bottorn). The vertical dashed lines indicate the beginnings of the model selection
(31.12.2013) and model evaluation (29.12.2015) windows.

3. Methodology

We implement the multivariate modeling framework, as defined in [15], in which the predictions
are performed separately for each hour. To represent our variables, we use ‘day x hour” matrix-like
structures. The day-ahead forecasts p; ;41 = Pay of the electricity price py), for day d and hour & are
computed on day d — 1 using all the information known up to that point in time. We utilize a rolling
window scheme, i.e., our models are calibrated to data in a 364-day-long window, and once the 24
forecasts for all hours of the next day are made, the window is rolled forward 24 h. Then, the models
are calibrated again, and forecasts are computed for the next 24 h. This procedure continues until the
predictions for the last day in the sample are made.

Our models involve day-ahead electricity prices and two exogenous variables, see Sec. 2 and
Figs. 1-2. All three time series undergo a variance stabilizing transformation (VST; see Sec. 3.1 below)
and seasonal decomposition (see Sec. 3.2 below) prior to model calibration; we consider two orders
of applying these transformations — VST first then seasonal decomposition or vice versa. The only
exceptions are the benchmark models for which seasonal decomposition is not performed. Although
we use a multivariate modelling framework, both transformations are carried out in the calibration
window for the original time series at hourly resolution, just like in [8]. Moreover, since the forecasts
of the exogenous variables are known one day in advance, in their case, seasonal decomposition and
variance stabilization are applied to a window that is one day longer, i.e., which covers 365 days and
includes the day for which the price forecasts are made.
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Figure 2. Day-ahead market prices in the Commonwealth Edison zone (COMED; top) and two
forward looking series: the day-ahead system (middle) and COMED zone (bottom) load forecasts. The
vertical dashed lines indicate the beginnings of the model selection (31.12.2013) and model evaluation
(29.12.2015) windows.

When it comes to forecasting, like in [8,10], the LTSC of the price time series is assumed to persist
into the future (see Sec. 3.2 below), whereas the stochastic component is predicted based on two models
with an autoregressive structure. The first one is a parsimonious ordinary least squares (OLS) estimated
model, built on some prior knowledge of experts (see Sec. 3.3 below), whereas the second one is a
parameter-rich LASSO-estimated model (see Sec. 3.4 below).

Finally, in Section 3.5, we propose two methods of averaging/selecting forecasts. We construct our
combined predictions based on performance in a 2-year-long model selection (or validation) window
and compare them — like all considered models — in the 3-year-long evaluation (or test) window, see
Figs. 1 and 2.

3.1. Data Transformation

A number of transformations can be used to reduce the variation in data and allow to handle
close to zero or negative electricity prices. Here, following [15,18,22], we resort to the area hyperbolic
sine (asinh), which is a simple but well performing variance stabilizing transformation (VST). Before
applying it, we normalize each series x, , i.e., prices or load /wind forecasts, using its median Med
and median absolute deviation MAD; in the calibration window T:

1 Xd h —Medr
MAD,; '

)

Yan =
20.75
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where z( 75 is the 75th percentile of the standard normal distribution and ensures asymptotically
normal consistency to the standard deviation. Such a normalization is more robust to outliers than the
one based on the mean and the standard deviation, and thus it is preferred for spiky data [23]. Having
normalized our variables, we apply the VST:

Zap = aSinh(}/d,h) = log (]/d,h + \/m) . 2)

The forecasts are obtained for models calibrated to the VST-transformed series, after applying the
inverse transformation:

MAD<
20.75

Xgp = sinh (Zd,h) + Med+, 3)

where sinh is the hyperbolic sine. Since the latter is a nonlinear function, given random variable X,
Esinh(X) does not have to equal sinh(EX). Hence, from the probabilistic point of view, Eq. (3) is
not the correct inverse transformation. Although this problem is generally ignored in the literature,
Narajewski and Ziel [33] argue that using the correct transformation yields better forecasts. On the
other hand, when the forecasts are averaged, the differences between the two approaches seem to
vanish [34]. Since we eventually consider forecast combinations, to keep it simple, we use Eq. (3) as
the inverse transformation.

3.2. Seasonal Decomposition

Seasonal decomposition is a term that generally refers to representing a signal as a sum or
a product of a periodic component and the remaining variability (also known as the stochastic
component). Recent studies have shown that seasonal decomposition of day-ahead prices and separate
treatment of the seasonal and stochastic components can result in more accurate forecasts generated by
OLS-estimated [10,11] as well as LASSO-estimated [18] models. The approach proposed by Nowotarski
and Weron [8] relies on an additive decomposition that splits the original time series, Y}, into the
long-term trend-seasonal component (LTSC), T, and the remaining stochastic component with short-term
periodicity, X;:

Y =T + X4 4)

In our study, depending on the order of applying seasonal decomposition and the variance stabilizing
transformation, Y; may denote asinh-transformed or raw data. In the latter case, the VST is applied
only to X;. Both components are modeled independently and their predictions are combined to yield
price forecasts. Like in [8-11], we consider persistent forecasts, i.e., assume that the last 24 hourly
observations of the LTSC will repeat the next day:

Tivin = Top 5)

where d* is the last day in the calibration window and the single and double time indexes satisfy
t =24d + h.

We consider two well-performing methods of extracting and modeling the LTSC — one based
on wavelet smoothing [2-5,7] and one on the Hodrick-Prescott (HP) filter [4,10,19,20]. In wavelet
smoothing [1,35], the original time series is decomposed using the discrete wavelet transform into
a sum of an approximation series capturing the general trend, Sg, and a number of detail series, Dy,
representing higher-frequency components: Sy + Dy + Dy_1 + ... + D1, where k is the smoothing level.
The LTSC is then approximated by Si. We consider the Daubechies family of wavelets, which is
frequently used in EPF studies [8-11,36-39]. More precisely, we utilize Daubechies wavelets of order 4
(denoted by ‘db4’), and the smoothing level k ranges from 6 to 14. See the left panels in Fig. 3 for an
illustration.
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Figure 3. Illustration of the long-term trend-seasonal component (LTSC) based on wavelets Sg, Sg and
S14 (left column) and HP filters with A = 10°,10°, and 1013 (right column) fitted to Nord Pool prices in
the initial calibration window, see Fig. 1. Only the last 8 weeks are displayed.

While wavelet smoothing removes layers of details, D1, Dy, etc., the Hodrick-Prescott [40] filter
simply returns T; which minimizes squared deviations from Y; (first term) and squared fluctuations of
the smoothed series itself (second term):

T

-1 2
mind Y (Vi —T)2+A ¥ [(Tt+l ~T)— (T, — TH)} , )
LU = t=to+1

where ¢y and T are respectively the beginning and the end of the calibration window in the single time
index notation, and A is the smoothing parameter. Here, we consider nine values of the latter: A = 10
with k = 5,6, ...,13. The larger the A, the smoother the resulting series is, see the right panels in Fig. 3.

3.3. The OLS-estimated Benchmark

As a benchmark, we consider the well-performing expertp, y,,; model proposed in [15], extended
to include two exogenous variables. We denote it by ARX to reflect its autoregressive structure with
exogenous variables. Within this model, the transformed price on day d and hour # is given by:

Xap = BuiXa—1n + BrnpXa—2n + BrzXa—7n + BrnaXa—1,min + Bns5Xa—1,max + BneXa—1,24

autoregressive effects non-linear effects midnight value
4 @)
+ Bi7Cran + BrsCodn+ Y Bns+iDia +€in
i=1
exogenous variables —

weekday dummies

where X;_1 in and X1 4y are the previous day’s minimum and maximum observations, X;_1 4 is
the previous day’s midnight value, i.e., the last known observation in the day-ahead market, C; ;,
and C, 4, are two exogenous variables (here: day-ahead forecasts of price drivers relevant for a given
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dataset, see Section 2), D 4, ..., Dy ; are weekday dummies, and €, is the noise term. The parameters
of the model are estimated using OLS, independently for each hour.

3.4. The LEAR Model

The structure of the main predictive model considered in this study is a natural extension of Eq.
(7) that includes all 24 hourly observations for the considered three days, i.e., yesterday, two days ago,
and a week ago, and predictions of the exogenous variables for all 24 hours of the day:

24
Xan =Y (BniXa1,i + PnpariXa—o,i + Pras+iXa—7,) + Bn7aXa—1,min + Bn7aXa—1max
i=1
24 7 ®
+ Y (BuzatiCia,i + Buos+iCodi) + Y Bni22+iDig + €
i=1 i=1
We estimate the 129 regressors via the least absolute shrinkage and selection operator (LASSO) [41]:
R 129
By = argrr%in RSS + « 2 Bril . )
i=1

where RSS is the residual sum of squares and & > 0 is a tuning parameter. For &« = 0 we get the
standard OLS estimator, for large values of « all coefficients become zeros, while for intermediate
«’s the LASSO shrinks some of them to zero and thus performs variable selection. There are several
techniques to optimize the tuning parameter [42]. Here, we use cross-validation with 7 folds since the
number of observations in the calibration window is divisible by 7. Following [21], we refer to this
LASSO-estimated autoregressive model as the LEAR model although the LEAR model defined in [21] is
a richer structure (it includes nearly 250 regressors, most notably lagged fundamental variables).

3.5. Forecast Averaging Schemes

The best-performing seasonal decomposition is not known in advance. To address this problem
we utilize forecast averaging [28-30]. As suggested in [8], we generate a pool of forecasts from a
single model (here: ARX or LEAR) calibrated to data decomposed with different filters (either wavelet-
or HP-based) and combine them into a single value. We consider two methods of combining point
forecasts — one that selects the best combination of a pool of models and one inspired by Bayesian
Model Averaging [27].

Moreover, since our results (see Section 4) do not provide a clear indication for the optimal order
of applying transformations — seasonal decomposition first and variance stabilization second, i.e.,
VST[SD(+)], or variance stabilization first and seasonal decomposition second, i.e., and SD[VST(-)]
— we also consider combining forecasts from both approaches. Overall, the combined predictions
are constructed from individual forecasts: either 18 wavelet-based (9 smoothing levels and two
orders of applying transformations) or 18 HP filter-based (9 values of A and two orders of applying
transformations).

3.5.1. Best Combination

The simpler averaging scheme selects the best performing combination of a pool of models.
Hence, we refer to it as the Best Combination and denote by BC. Overall, given 18 individual forecasts
(— columns in the left rectangle in Fig. 4), there are 2!8 — 1 possible combinations (— rows in the same
rectangle). The first combination is just the forecast for the first LTSC, the second is the forecast for the
second LTSC, ..., the 19th is the combination of forecasts for the first and second LTSCs, the 20th is the
combination of forecasts for the first and third LTSCs, ..., and the last is the combination of forecasts for
all LTSCs.
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Figure 4. Illustration of the BC and BMA-type averaging schemes. For both approaches all possible
combinations (2!8 — 1 rows in the left rectangle) of individual forecasts for the different variants
of the LTSC (2 x 9 = 18 columns representing two orders of applying transformations, VST[SD(:)]
and SD[VST(-)], and 9 wavelet levels or 9 HP filter’s As; see also Table 1) are generated. Then, the
predictions of all models for a given combination are averaged using the arithmetic mean and either
the best-performing combination in terms of RMSE in the model selection window is selected (— BC)
or all combined forecasts are iRMSE-weighted (— BMA).

In each row the predictions are averaged using the arithmetic mean. Then, in order to choose
the best-performing combination, we calculate the root mean squared error (RMSE) for all considered
combinations of forecasts in the model selection window (i.e., the 2-year period directly preceding the
3-year test period, see Figs. 1 and 2):

1092 24

1
RMSE = \| o0o—— Y Y (pan—75,)% (10)
72824 | Ss i ’

where pj; , is one of the 218 — 1 combined forecasts and py, is the actual price for day d and hour h. We
choose the combination that returns the lowest RMSE, see the green square in Fig. 4. This combination
is eventually evaluated in the model evaluation window (i.e., the 3-year test period) and compared to
other combined and individual models.

In Table 1 we present the five best-preforming combinations in the model selection window
obtained for both datasets and the LEAR model with wavelet-based filtering. Squares indicate
individual predictions that are averaged in a given combination. For instance, for the NP dataset
the best combination is composed of forecasts for three LTSCs obtained by first applying seasonal
decomposition, then the VST: Sg, S1p and Si3, and one LTSC obtained by first applying the VST,
then seasonal decomposition: S19. The RMSE of this combination in the model selection window is
2.2984, nearly the same as that of the second best combination. The last row in each part of the table
represents averaging over all individual forecasts; for NP the RMSE of 2.3485 is ca. 2% higher than for
the best-performing combination.
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Table 1. Root mean squared errors (RMSE) and their inverse values (iRMSE) calculated in the 2-year
model selection window (see Figs. 1 and 2) for five best-performing combined forecasts obtained from
the LEAR models with wavelet-based filtering. Squares indicate individual forecasts that are averaged
in a given combination. For comparison, the last row represents averaging over all individual forecasts.
Individual models where seasonal decomposition is executed first, then the VST is applied, are labeled
by VST[SD(-)], whereas models with the opposite order are labeled by SD[VST(-)].

NP
VST[SD(-)] SD[VST(-)]
Se Sy Ss So S10 S11 S12 S13 S14 Se¢ S7 Ss S9 S0 S11 S12 S13 S14 RMSE  iRMSE
1 n n n n 2.2984 0.4351
2 = = n 2.2984 0.4351
3 n n n 2.2985 0.4351
4 n = n n 2.2991 0.4350
5 n n n [ 2.3002 0.4347
n n n n n n n n n n n n n n n n n n 2.3485 0.4258
PIM
VST[SD()] SDIVST()]
S¢ S7 Ss So S10 S11 S12 S13 S14 Se S7 Ss S9 S0 S11 S12 S13 S1u RMSE  iRMSE
1 = n 19.0596  0.0525
2 [ n [ 19.1281 0.0523
3 n n n 19.1423 0.0522
4 n n n 19.1633 0.0522
5 n n n n n 19.2004 0.0521

" = ® ® ® ® ®E ®E ®E ®mE ®m =m =m =m =m =m =m wm 20499 @ 0.0488

3.5.2. BMA-type Averaging

The more complex averaging scheme, instead of selecting one forecast combination out of 2'8 — 1
possibilities, weighs all combinations:

2181

~BMA __ AC,1

Paj = Y, wibdy (11)
i=1

where ﬁ;’lé is the ith of the 2!8 — 1 combined forecasts. The weights are computed based on past

performance:
iRMSE;

- (12)
y2°~1iRMSE;

1
where iRMSE; is the inverse of the root mean squared error of the ith combination in Eq. (10), see
Fig. 4. In the last column of Table 1 we report iRMSE values for the five best-preforming combinations
obtained for both datasets and the LEAR model with wavelet-based filtering. As can be seen, due to
small differences in RMSE values, the weights are nearly identical for the top performing combinations
and very similar to the weight for the average across all individual forecasts.

This idea is similar in spirit to Bayesian Model Averaging [27], which weighs combinations by
posterior probabilities. The latter has not performed very well in an extensive EPF study [30], hence
our idea to replace posterior probabilities by iRMSE weights, similarly as in [28,29]. Although our
approach is only inspired by Bayesian Model Averaging, for simplicity of notation we denote it by
BMA.
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Figure 5. Relative mean absolute errors (rMAE; top row) and relative root mean squared errors (rRMSE;
bottom row) for individual and combined forecasts obtained for the ARX (left panels) and LEAR (right
panels) models and the NP dataset. Circles represent the performance of individual models where
seasonal decomposition is executed first, then the VST is applied, while triangles the opposite order.
Models without seasonal decomposition are indicated by the black solid line (labeled noLTSC), whereas
the combined models by colored solid lines with markers at the ends.

4. Results

4.1. Forecast Evaluation

Forecast accuracy is assessed in the 3-year or 3 - 364 = 1092-day model evaluation window, using
two error measures. Following the recommendations put forward in [21], both are relative metrics.
This allows us to compare model performance across different datasets. The relative mean absolute error
(rMAE) and the relative root mean squared error ({RMSE) are defined as:

. 2184 24 L \2
MAE — Y3 005 Trer | Pay — Panl RMSE — \/ Y1003 L1 (Pan — Pan) 13
2184 24 _ snaive|’ N2
Lid=1093 =1 ‘Pd,h Pan \/ YA Y <p dh— p%‘/e)

where p; ;, denotes the actual (observed) price for day d and hour , p;, is the corresponding prediction
obtained using the model under the evaluation, and p53V® is a similar-day prediction [43]:

(14)

/!

ﬁnaive _ {pd”, for Monday, Saturday, and Sunday,

Pi—1y otherwise.

Results for the individual and combined ARX and LEAR models for both datasets are presented in
Figs. 5 and 6. They all lead to similar conclusions.
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Figure 6. Relative mean absolute errors (rMAE; top row) and relative root mean squared errors (rRMSE;
bottom row) for individual and combined forecasts obtained for the ARX (left panels) and LEAR (right
panels) models and the PJM dataset. Markers and line styles used are the same as in Fig. 5.

Firstly, we can see that seasonal decomposition can improve the accuracy of forecasts generated
not only by simple autoregressive models but also by parameter-rich models with automated variable
selection via the LASSO. More considerable improvements can be achieved in the NP market, see
Fig. 5. Moreover, in this case, most of the individual models with seasonal decomposition return lower
error scores than the benchmark model without it (denoted by noLTSC). For the PJM dataset, see Fig. 6,
the improvements are smaller, and they occur more frequently for ARX models. The only problem
with such individual models is that not all of them beat the benchmark model without seasonal
decomposition. Thus, it is difficult to choose the optimal LTSC ex-ante.

Secondly, there is no general answer to the question which order of applying data transformations
performs better. It seems to depend on the considered model, market, type of the LTSC, or error
measure. For instance, in the top row of Fig. 6, where the rMAE is presented for the PJM dataset, the
best performing approach changes depending on the considered filtering type. For wavelet-based
filters, it is generally more effective to apply the seasonal decomposition first, whereas for HP-based
filters, the VST first. On the contrary, for the NP dataset and rRMSE (see the bottom row of Fig. 5), the
performance strongly depends on the chosen parameters used to extract the LTSC, i.e., the smoothing
level k or the smoothing parameter A.

To overcome these difficulties, we consider two averaging schemes, see Sec. 3.5. In Table 2, we
collect all the error scores for the combined and the benchmark models. It turns out that for both
datasets the BC and BMA averaging schemes always return lower rMAE and rRMSE scores than
the benchmark model without seasonal decomposition (denoted by noLTSC). Moreover, there are
generally only a few individual models that can outperform the combined models. Hence, we can
conclude that forecast averaging solves the problem with the ex-ante selection of the best performing
LTSC and order of data transformations. Furthermore, all the combined LEAR models outperform
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Table 2. Relative mean absolute errors (rMAE) and relative root mean squared errors (rRMSE)
calculated in the model evaluation window for the combined and the baseline ARX and LEAR models.
The lowest score in a row is emphasized in bold, independently for the ARX and LEAR models,
whereas the lowest score in a row across all models has a green background.

NP
ARX LEAR
noLTSC BC  BMA noLISC BC  BMA
MAE  o7g; HP 06615 06607 . HP [06016 06063
dbd  0.6626 0.6658 db4 | 05944 0.6074
RMSE 0754 HP 07154 07190 .. HP | 06424 0.6503
db4 07321 0.7312 db4 | 0.6563 0.6744
PIM
ARX LEAR
noLTSC BC  BMA noLISC BC  BMA
MAE 07073 HP 06761 06814 . HP 06603 | 0.6520
db4d 07263 0.7076 db4d 06634 | 0.6596
HP 07026 0. HP  0.687 :
rRMSE  0.7343 07026 0.6988 ) (o5 06579 .
db4 07236 0.7157 dbd  0.6923 | 0.6792

their ARX counterparts, so the use of LASSO-estimated models additionally increases the accuracy of
the combined forecasts.

Finally, let us compare the averaging schemes and the ways of modeling the LTSC. It turns out
that the BMA approach returns lower errors than BC in 9 out of 16 cases. When it comes to the
best-performing approach for extracting the LTSC, we can observe that the one based on HP filters
yields lower error scores in all the cases except one (i.e.,, LEAR, BC averaging, NP market; see Table 2).

4.2. Testing for Conditional Predictive Ability

The obtained forecasts are also compared using the conditional predictive ability (CPA) test of
Giacomini and White [32]. Here, following [15], we only focus on the results of the multivariate
version of the test, which for each pair of models returns a single p-value for all 24 hours. The tests
were conducted separately for the absolute and squared losses.

Following [10,15,21], we present the CPA test results as chessboards with a color-coded p-value,
where the color ranges from dark red (higher p-values) to dark green (lower p-values). A colored
square in the chessboards indicates that the predictions of the model on the x-axis are significantly
better than the predictions of the model on the y-axis. The greener this field is (the lower the p-value
is) the more statistically significant the difference is. A black square means that there is no statistically
significant difference in predictive accuracy at the 10% level.

In Figures 7 and 8 we illustrate the results for the absolute and squared losses, respectively. As
can be seen, the combined forecasts significantly outperform the predictions of the benchmark models
without seasonal decomposition in 22 out of 32 cases (at the 10% level). When we consider only the
LEAR models, the improvement is statistically significant in 11 out of 16 cases. Only for the PJM
market (both averaging schemes for the squared losses, see Fig. 8, and LEAR BMA db4 for linear
losses, see Fig. 7) the improvements over the benchmark are not statistically significant. Moreover,
the outperformance of the forecasts of the combined LEAR models over their ARX counterparts is
significant in 14 out of 16 cases. Thus, the CPA tests confirm that seasonal decomposition improves the
accuracy of combined forecasts generated by the LASSO-estimated models.

Regarding the method of combining forecasts. Although the BMA approach returns lower errors
than the BC approach in 9 out of 16 cases (see Table 2), the CPA tests indicate that outperformance is
significant only in 2 cases. On the other hand, the BC approach outperforms significantly the BMA



Version March 28, 2021 submitted to Energies 13 of 16

NP || - ||y . PJM || - |];
ARX noLTSC 18

ARX noLTSC JRg8

ARX BC HP 0.08 ARX BC HP 0.08
ARX BC db4 ARX BC db4
ARX BMA HP 0.06  ARX BMA HP 0.06
ARX BMA db4 ARX BMA dbd
LEAR noLTSC LEAR noLTSC
LEAR BC HP 0.04 LEAR BC HP 0.04
LEAR BC db4 LEAR BC db4
LEAR BMA HP 0.02 LEAR BMA HP 0.02
LEAR BMA db4 X LEAR BMA db4 X
O ¥ A YO ¥ Y O ¥ ¥Ooa ¢
RESESZESES 0.00 FEsEZcZET TS 0.00
A0 0 <30I« A0 «3Q0 <«
AR =s2R8m =< A R=25 283z <
xxxmmgnﬁmmm xxxmmmmmmm
EREErK <SS s EE XK <SS s
= <eEzZdHHEa< = T <ezZd B84 <
< < 4 EJ E < < A E E

Figure 7. Results of the CPA test [32] for absolute losses. A colored square (other than black) indicates
that the predictions of the model on the x-axis are significantly better than the predictions of the model
on the y-axis, at a given significance level.

approach in 6 cases. Given that the differences in the error scores between both averaging schemes are
small, we can recommend the simpler approach — BC averaging.

Finally, although the combined models based on HP filters return lower error scores in almost all
cases, the advantages of using one LTSC function over the other are not so clear from the perspective
of the CPA test. The combined forecasts based on HP filters are significantly better than those based on
wavelet filters only in 6 cases, at the 10% level, whereas the remaining 10 cases show no significant
differences. Considering the 5% level and only the combined LEAR models, all the differences become
statistically insignificant.

4.3. Computational Complexity

The models considered in this study are computationally feasible even in time-constrained
scenarios. Note, that all the times reported in this subsection reflect a single-threaded task run on an
AMD Threadripper 1950X processor.

The average computation time per forecast day amounts to 8-9 s for the LEAR models and
0.03-0.05 s for the ARX models. The listed times reflect the whole process, including data preprocessing,
such as the application of the LTSC or the VST. Nevertheless, model estimation is the most
time-consuming task. To be more precise, the ARX model without the LTSC is, on average, computed
in 0.027 s, whereas the computation of the same model with the LTSC takes 0.03 s for db4 wavelets and
0.05 s for HP filters. For the LEAR model, the input data impact the convergence rate. The smallest
time in this case was measured for the model with the LTSC based on db4 wavelets — 8 s per day. On
the other hand, for the model with the LTSC based on HP filters or without the LTSC, the computations
took closer to 9 s.

The averaging schemes require additional computational time. One has to consider the generation
of forecasts to determine the best averaging scheme. Sequential computation of the set of forecasts for
one LTSC variant and a 728-day selection window takes around 33 hours. Computing the errors of all
218 — 1 possible combinations of the forecasts takes 101 seconds. The above operations are, however,
done only once.
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Figure 8. Results of the CPA test [32] for squared losses. A colored square (other than black) indicates
that the predictions of the model on the x-axis are significantly better than the predictions of the model
on the y-axis, at a given significance level.

5. Conclusions

To address the question whether the seasonal component approach is beneficial in the case
of parameter-rich models, we have performed an extensive empirical study which involved a
well-performing, LASSO-estimated autoregressive (LEAR) model with nearly 130 regressors, two
approaches to modeling the LTSC (wavelet smoothing and the Hodrick-Prescott filter), and the area
hyperbolic sine transformation. Given that our initial results did not provide a clear indication for the
optimal choice of the LTSC nor the optimal order of applying transformations — seasonal decomposition
first and variance stabilization second or vice versa — we have introduced two averaging schemes.
The first one, dubbed Best Combination (BC), selects the best combination of a pool of models. The
second is inspired by Bayesian Model Averaging, but weighs combinations by the inverse (of the) root
mean squared error (iIRMSE), instead of the originally proposed posterior probabilities; for notational
convenience, we refer to it as BMA.

Our results indicate that seasonal decomposition can significantly — as measured by the conditional
predictive ability (CPA) test — improve the accuracy of forecasts generated not only by simple
autoregressive but also by parameter-rich models with automated variable selection via the LASSO.
Moreover, for both datasets the averaging schemes always return lower error scores than the benchmark
model without seasonal decomposition. At the same time, there are only a few individual models
that can outperform the combined models. Hence, we can conclude that forecast averaging solves the
problem with the ex-ante selection of the best performing LTSC and order of data transformations.
Furthermore, all the combined LEAR models outperform their parsimonious ARX counterparts, so the
use of LASSO-estimated models additionally increases the accuracy of the combined forecasts.

Finally, although the BMA approach generally returns slightly lower errors than BC, the CPA
tests indicate that outperformance is in most cases insignificant. Hence, we recommend the simpler
approach — BC averaging. Interestingly, this is consistent with recommendations put forward in the
forecasting literature, i.e., that instead of combining the full set of forecasts, it may be advantageous to
discard the models with the worst performance [29,44].
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