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Abstract
In this work, we propose a new method for modeling human reasoning about objects’ similarities. We assume that

similarity depends on perceived intensities of objects’ attributes expressed by natural language expressions such as low,

medium, and high. We show how to find the underlying structure of the matrix with intensities of objects’ similarities in the

factor-analysis-like manner. The demonstrated approach is based on fuzzy logic and set theory principles, and it uses only

maximum and minimum operators. Similarly to classic eigenvector decomposition, we aim at representing the initial

linguistic ordinal-scale (LOS) matrix as a max–min product of other LOS matrix and its transpose. We call this recon-

structing matrix a neuromatrix because we assume that such a process takes place at the neural level in our brain. We show

and discuss on simple, illustrative examples, how the presented way of modeling grasps natural way of reasoning about

similarities. The unique characteristics of our approach are treating smaller attribute intensities as less important in making

decisions about similarities. This feature is consistent with how the human brain is functioning at a biological level. A

neuron fires and passes information further only if input signals are strong enough. The proposal of the heuristic algorithm

for finding the decomposition in practice is also introduced and applied to exemplary data from classic psychological

studies on perceived similarities between colors and between nations. Finally, we perform a series of simulation experi-

ments showing the effectiveness of the proposed heuristic.

Keywords Similarity perception � Fuzzy logic � Similarity matrix decomposition � Neuromatrices � Linguistic ordinal scales

(LOS) � Reconstructing similarity matrix

1 Introduction

In our paper, we present a new approach to modeling and

analyzing human perception of similarities that derives

both from cognitive psychology and from neurophysio-

logical studies. Though there have been developed a

number of models trying to mimic the brain functioning,

there is still a variety of issues that are not covered or clear

in this regard. In this research, we focus only on modeling

of a specific aspect of the human thinking, that is, pro-

cessing the object’s similarities. As a result, our proposal

could be treated only as a small subproblem to the general

human cognitive architectures available in the literature,

such as ACT-R (e.g., [1, 2]), SOAR (e.g., [3, 4]), or EPIC

(e.g., [5, 6]. The review of these approaches can be found,

for example, in [7–9], whereas interesting discussion of

their importance in general artificial intelligence was pre-

sented, for example, in [10, 11].
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We assume that similarity depends on perceived inten-

sities of objects’ attributes expressed by natural language

expressions such as low, medium, and high, that may be

provided, for example, by an expert. Ordinal scales are

very widely used in psychology, sociology, business or

marketing, especially in diverse questionnaire-based stud-

ies. In general, one is able to arrange scale items in an

order, e.g., from the smallest to the biggest, from the most

to the least preferred, important, usable, etc. However, the

distances (intervals) between two consecutive items may

not be equal throughout the whole scale and are usually

unknown. Probably, the most popular scale of this type is

the Likert scale [12] and its countless variations (e.g., 1.

Strongly disagree, 2. Disagree, 3. Neither agree nor dis-

agree, 4. Agree, and 5. Strongly agree). Exact definitions,

properties, and applications of different types of scales can

be found, for example, in the seminal paper of Stevens

[13]. The ordinal scale may be presented in various ways,

such as numbers, text, or graphical objects. In this paper,

we use scales of ordinal nature with items presented as

language expressions and call them linguistic ordinal scales

(LOS). They are also sometimes referred to as qualitative

ordinal scales (e.g., [14]).

Our main goal is to approximate a matrix containing

intensities of objects’ similarities evaluated by pairwise

comparisons on LOS. For this purpose, we search for such

a set of vectors, expressed also on LOS, that, multiplied by

their transposes using max and min operators, reconstructs

the original matrix as close as possible. The sought set of

vectors forms a matrix, which we name the neuromatrix.

Some recent studies involving brain imaging (e.g., [15])

show that tasks differing in cognitive load are related to the

existence of brain states that cannot be directly associated

with presented stimuli. Thus, modeling and searching for

hidden structures of similarities may correspond to the

physiology of human brain functioning.

In problem solving approaches, it is more and more

common to connect such separate fields as neuroscience

and computer science. In this regard, analogies to a phys-

iological human brain functioning are gaining increasing

attention. For instance, lately two special issues have been

devoted to this subject: Brain-inspired computing and

machine learning [16] and Cognitive computing for intel-

ligent application and service [17]. The researchers, in

general, try to mimic the human mental cognition as close

as possible. The simple neuron-based models are becoming

to a greater extent complex and similar to the real bio-

logical mechanisms taking place in human brains (cf. [18]).

Our approach fits well into this trend. We presume that

the neuromatrix searched for in our proposal reflects the

brain activity occurring at the neural level and represents

the objects–factors relations. The matrix of similarities’

intensities, in turn, is a kind of a resulting demonstration of

those hidden brain processes that can be observed and

registered at the behavioral level. Our proposed method

may be treated as an attempt to relate neural characteristics

of thinking about similarities with their behavioral repre-

sentations measured on LOS.

1.1 Background and related work

There is a number of various methods developed and

extended over the last decades in different fields of science

that deal with the data dimensionality reduction problem

and finding the data underlying or latent structure. Proba-

bly, the most known and popular is the principal compo-

nent analysis (PCA) that derives directly from the classic

linear algebra and involves the eigenvalue and eigenvector

decomposition. This approach and its countless modifica-

tions have been used by scientists for a variety of purposes

in different applications. Currently, it is still common to

come across various versions of this method in scientific

papers. For example, Zhu et al. [19] combined PCA with

linear hashing and manifold learning for similarity search

in color images, while Das et al. [20] used PCA to remove

irrelevant features in their hybrid neuro-fuzzy reduction

model for classification purposes. Other contemporary

advancements in regarding PCA may be found, for exam-

ple, in [21–23]. One of the latest and most comprehensive

overviews of the data dimensionality reduction techniques

has been provided by Ayesha et al. [24].

Another widely utilized technique used for uncovering

hidden structure of surveys’ data is factor analysis (FA).

Though there is a considerable number of theoretical

constraints and practical problems with this approach (e.g.,

related to applying this method to variables measured on

interval scale), it is very popular. The concept of FA is

similar to PCA, but due to controlling the within-subjects

errors, it is far more computationally challenging. Scien-

tists have also developed more complex and versatile

methods that incorporate ideas and computations from FA.

These studies led to a common framework called structural

equation modeling, which has become, de facto, a standard

in studies involving humans answers to various types of

surveys. Recommendations on how to apply them in

practice are available, for example, in [25], whereas some

recent methodological developments in this area can be

found, for example, in [26–28].

Most of the available methods assume that the processed

data are measured in ratio or interval scales. However, in

many cases, especially in the fields of psychology, mar-

keting, education or sociology, the investigators have only

ordinal data at their disposal. Unfortunately, it is still quite

common for psychologists and researchers from other

fields to use FA- or PCA-based methods for the data

gathered only on the ordinal scales, which is, strictly
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speaking, not fully appropriate. Stevens [13] pays attention

to it yet in the 1950s, pointing out that an ordinal scale

allows only for determination of greater or less. Thus, the

researcher obtains only the rank order of data. In such a

case, there is no guarantee that successive intervals on the

scale are equal in size.

Though these approaches are useful in many situations,

they do not address all the problems associated with their

theoretical assumptions (e.g., regarding the nature of the

underlying probability distribution). Therefore, researchers

have been trying to elaborate new methodologies. The

great abundance of misusing the PCA- and FA-based

methods is not justified in light of the methodological

progress on other than ratio or interval scales. For instance,

various equivalents of FA for the ordinal-scale variables

were developed, by Jöreskog and Moustaki [29]. These

methods, however, still require some assumptions, and they

end up with factor loadings which are interpreted as cor-

relations. Despite that, their ideas were further extended,

for example, in [30, 31], and recently in [32].

Lately, Revuelta et al. [33] have shown how to apply

exploratory and confirmatory analysis to nominal data in

Mplus software. Their approach is similar to multinomial

logistic regression with unobserved predictors. A version

of FA which operates only on binary data (BFA) is

described by Belohlavek and Vychodil [34]. Similar pro-

posals were put forward by Boeck and Rosenberg [35] and

Widerjans et al. [36]. They developed HICLAS and SIM-

CLAS models, respectively. The general idea of these

methods consists in reconstructing objects–attributes bin-

ary matrix I by two binary matrices of relationships:

objects–factors and factors–attributes. Boeck and Rosen-

berg [35] developed algorithms for performing the recon-

struction based on set-theoretical terms, such as

association, equivalence, and hierarchical implication.

They restrict sets of possible vectors, called as bundles, to

those that meet the assumed relationships.

The ordinal HICLAS proposal by Leenen et al. [37] is

an extension of the HICLAS model, where the initial

binary matrix (objects–attributes) is recreated by bundles

containing ordinal-scale variables. They employ specially

defined association relationships connecting an AND OR

logic to obtain hidden factors and hierarchical relationships

between objects and factors.

A similar approach was presented by Ganter and Glo-

deau [38]. The authors showed the way of searching

ordinal factors for an initial binary matrix. This, in turn, is

an extension of BFA and aims at a factorization by regular

binary factors that are determined individually for each

ordinal-scale category. The model corresponds fully to the

disjunctive version of ordinal HICLAS proposal [37],

though the same result is obtained by a slightly different,

more mathematically justified method. Moreover, the

authors analyze properties of their approach in the context

of a formal concept analysis. In this respect, they are

moving in the direction developed by Belohlavek et al.

[39, 40] where BFA is combined with a formal concept

analysis. The formal concept is defined as a subset of the

attributes’ relationships containing these objects that have

the same attributes, and the attributes are common for

objects from this set. Belohlavek provided many properties

of this approach. In particular, he demonstrated that having

the binary objects–attributes relationship, one can always

find the solution in the form of sets of factors that fully

reconstruct the initial matrix. In specific cases, it is also

possible to find the solution including fewer vectors than

the number of vectors in the initial matrix [34]. Formal

concepts allow to restrict the solutions’ search space and

are generated by contextual knowledge about relationships

between objects and attributes. In [41, 42], the binary

approach is generalized to fuzzy data and relationships,

such that properties and theorems from formal concepts

used in BFA apply also if attributes and relations are

assessed by the truth value from multimodal logic, i.e., by

values from the interval [0, 1]. Recent advances regarding

formal concept analysis involving dimensionality reduction

may also be found, for example, in [43, 44].

Another original approach to factorization of matrices

was put forward by Lin et al. [45], where the matrix with

ordinal-scale measures of the objects–attributes relation is

explained by vectors representing orthogonal factors.

Apart from the FA group of methods dealing with

ordinal-scale data, there are also methods that can be

specifically and directly applied for similarities between

objects and do not require ratio scale variables. The so-

called nonmetric MDS [46–50] approach is one among

them. Generally, the MDS class of methods enables one to

see the dissimilarities in dimensions which facilitate the

identification of possible underlying similarity structures.

The final analysis and interpretation of the results, how-

ever, might be troublesome if there are more than three

dimensions and if an other than Euclidean space is pre-

sumed. This trend of research is still active; some of the

latest research works include [51–53].

1.2 Contribution

In this research, we put forward to use the fuzzy logic and

set theory operators for reconstructing objects’ similarities

matrix by the searched for (hidden) objects–attributes

relation (the neuromatrix). As an input, we take a square,

symmetric fuzzy matrix of similarities between objects

denoted S (objects–objects, n 9 n). Based on the structure

of these values, we try identify factors that could have

possibly shaped the similarity ratings. In technical terms,

we want to find the so-called reconstructing vectors
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V (objects–factors, n 9 k) that represent the factors

underlying the observed similarities. The idea is similar to

classic FA. The number of factors (reconstructing vectors)

k is either lower or equal to the number of assessed objects.

Usually, we would be interested in finding as few factors as

possible to reconstruct the initial similarities as well as

possible.

The extensive explanations and discussion about the

relations, similarities, and differences between the existing

methods and our approach is presented in Sect. 2.5. The

main contribution of this research can be described under

the following three perspectives.

• From a theoretical point of view, we put forward a new

methodology that, to the best of our knowledge, has not

been earlier developed and utilized. The proposed

concept models human cognitive functioning in relation

to objects’ similarities assessments. The presented

approach allows to find hidden objects–attributes’

relations based on linguistic expressions and reduce

the dimensionality of similarities’ matrix. Our approach

is theoretically well grounded and soundly logically

justified (cf. Sects. 2.1–2.3).

• The technical aspect includes the development of the

heuristic algorithm that allows for taking advantage of

the theoretical proposal in practical applications. The

effectiveness of the put-forward procedure has been

proved in performed simulation experiments. The

unique characteristics of the method are treating smaller

attribute intensities as less important in making deci-

sions about similarities. This feature is consistent with

the way the human brain is functioning at a biological

level. A neuron fires and passes information further

only if input signals are strong enough.

• From the operational and practical application perspec-

tive, our proposal extends the arsenal of methods for

data dimensionality reduction and finding patterns of an

experimental data structure. Additionally, it may be

applied for linguistic-based or ordinal data, which is not

the case in most other approaches. As it was shown on

well-known practical examples, our methodology pro-

vides results that can be logically and reasonably

interpreted and may allow for better understanding of

the examined results. Our approach has a potentially

very wide usage in all research concerned with directly

assessing objects’ similarities.

The rest of this paper is organized in the following way.

First, we show and discuss on simple, illustrative examples

how the presented model grasps a natural way of reasoning

about similarities. In the next section, we discuss relations

and differences between our approach and other methods.

Then, we provide a description of a heuristic algorithm for

finding the underlying structure of the square matrix with

intensities of objects’ similarities in the factor-analysis-like

manner. Next, we apply our proposal to real experimental

data on perceived color similarities provided by Ekman

[54] and reanalyzed by Shepard [55, 56] and to an example

about subjective nations’ similarities described by Kruskal

and Wish [57, p. 31]. Section 5 presents experimental

simulation results of our algorithm for randomly generated

matrices and confront them with a brute force approach.

Finally, we sum up the described approach, indicate its

possible applications, and broadly discuss possible future

studies.

2 Modeling human thinking
about similarities

2.1 Fuzzy-set perspective

The idea of the proposed similarity assessment model for

a simple case of a single attribute and two objects can be

described in the following way: ‘‘the X and Y objects are

similar if the intensity rating of this attribute for both

objects is high.’’ In the perspective of fuzzy sets and

multimodal logic, the intensity level of the attribute A may

be specified as the membership function value of the object

in the set of ‘‘objects having the attribute A at a high

intensity level.’’ Then, lA(X) and lA(Y) denote member-

ship function values of X and Y objects, respectively,

belonging to the set of objects having the A attribute at

a high level of intensity. The relation of similarity can be

a fuzzy relation, which is, generally, defined as

R(X, Y) = T(l(X), l(Y)), where T is any T-norm or

implication. In the presented approach, the fuzzy relation

can be expressed as:

SIMILARITY X; Yð Þ ¼ lA Xð ÞAND lA Yð Þ; ð1Þ

where X, Y [ {O}, and O is the set of objects being

compared. In terms of fuzzy logic, the described inference

model can also be formulated as a logical expression:

SIMILARITY X, Yð Þ is HIGH IFF

Truth of A Xð Þ is HIGHð Þð
AND Truth of A Yð Þ is HIGHð ÞÞ;

ð2Þ

where A(X) is an intensity of attribute A for object X.

In both cases, we can define and calculate the similarity

degree for any two objects. For (1):

SIMILARITY X;Yð Þ ¼ min lA Xð Þ; lA Yð Þf g; ð3Þ

whereas for (2):
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SIMILARITY X, Yð Þ is HIGH

¼ min Truth of A Xð Þ is HIGHð Þ; Truth of A Yð Þ is HIGHð Þf g:

ð4Þ

In our approach, we assume that SIMILARITY(X, Y) is

determined by a human based on the perceived intensity of

attribute A, modeled by membership function values or by

the truth of (2). The natural way to define and process

attributes’ intensities is to use natural language expressions

such as low, medium, high, etc. It is reasonable to assume a

restricted number of intensity degrees given the psy-

chophysiological resolution, sensitivity of the senses, and

the cognitive abilities of the human brain. The intensity

granularity may also depend on the context.

The illustrative examples described in the next sections

show possible extensions of this way of thinking for a

greater number of attributes and objects. In the first

example, we took the binary data perspective which is

typical to Boolean factor analysis (BFA) [34], whereas in

the second one, we extend our considerations to LOS

values. In the latter example and the algorithm, we adopted

a linguistic model for determining and processing the

membership function of the degree of truth for intensity

levels of attributes. As membership function values and

degrees of truth are usually defined in the range of 0–1,

linguistic expressions (low, medium, and high) can be

replaced with numerical values from such a range (e.g., 0,

0.5, and 1, respectively). Due to the use of only max–min

operators in our approach, such manipulations are not

necessary. For clarity, we assign subsequent natural num-

bers to consecutive levels of attribute intensity.

2.2 Binary similarity data example

Let us say that an expert specifies the similarities between

all pairs of six sticks {a, b, c, d, e, f}. Each stick is char-

acterized by two attributes: its length and diameter. The

expert is able to assign each stick to two disjunctive length

classes: either long or short, and two disjunctive diameter

classes: wide and narrow. Table 1 presents an exemplary

result of such a procedure. Let us consider two extreme

approaches for assessing sticks similarities given this

objects–attributes relation: liberal and conservative.

2.2.1 Liberal pattern of similarity derivation

In the first, liberal logical pattern of similarity generation

(L_LPSG), the expert may regard as similar two sticks that

are assigned to the same class of one attribute or to the same

categories for both attributes, i.e., ‘‘both are long’’ OR ‘‘both

are short’’ OR ‘‘both are wide’’ OR ‘‘both are narrow.’’

Let us find objects’ relations separately for each attribute

by computing the Cartesian product of appropriate vectors

taken from Table 1 using logical AND. By applying logical

OR to these matrices, we obtain the objects’ similarities

matrix denoted as SL(Bin) (‘‘L’’ for ‘‘liberal’’ and ‘‘Bin’’ for

‘‘binary’’), i.e., sij is one when in any of these matrices the

(i, j)th element is one. The zero value will appear in sij only

if in all matrices the (i, j)th element is equal zero. As

a result, we obtain (5):

SLðBinÞ ¼

a
b
c
d
e
f

1 1 0 1 1 0

1 1 1 0 1 1

0 1 1 1 1 1

1 0 1 1 0 1

1 1 1 0 1 1

0 1 1 1 1 1

2
6666664

3
7777775

a b c d e f

: ð5Þ

As it was demonstrated by Belohlavek and Vychodil [34],

vectors from Table 1 may be treated as a matrix of speci-

fying factors. Thus, the similarity relation matrix can be

obtained by (6):

a

b

c

d

e

f

1 0 0 1

1 0 1 0

0 1 1 0

0 1 0 1

1 0 1 0

0 1 1 0

2
666666664

3
777777775

l s w n

�

l

s

w

n

1 1 0 0 1 0

0 0 1 1 0 1

0 1 1 0 1 1

1 0 0 1 0 0

2
6664

3
7775

a b c d e f

¼ SLðBinÞ:

ð6Þ

2.2.2 Conservative pattern of similarity derivation

In the second, conservative logical pattern of similarity

generation (C_LPSG), two sticks are similar only when

they have both attributes assigned to the same categories,

i.e., (‘‘both are long’’ AND ‘‘both are wide’’) OR (‘‘both are

long’’ AND ‘‘both are narrow’’) OR (‘‘both are short’’

AND ‘‘both are wide’’) OR (‘‘both are short’’ AND ‘‘both

are narrow’’).

Table 1 Sample binary data of objects–attributes relation

Sticks Length attribute Width attribute

Long (l) Short (s) Wide (w) Narrow (n)

a 1 0 0 1

b 1 0 1 0

c 0 1 1 0

d 0 1 0 1

e 1 0 1 0

f 0 1 1 0
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In this pattern of eliciting similarities, the matrix of the

objects–attributes relation consists of column vectors rep-

resenting joint attributes and may take the following form

(7):

a
b
c
d
e
f

0

1

0

0

1

0

2
6666664

lAND w

1

0

0

0

0

0

l AND n

0

0

1

0

0

1

s AND w

0

0

0

1

0

0

3
7777775

s AND n

: ð7Þ

By applying the same procedure as for the first way of

thinking, we obtain the subsequent similarity matrix

denoted as SC(Bin) (8), where ‘‘C’’ refers to conservative

and ‘‘Bin’’ to ‘‘binary’’:

a
b
c
d
e
f

1 0 0 0 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

2
6666664

3
7777775

a b c d e f

¼ SCðBinÞ: ð8Þ

It can clearly be observed that matrices SL(Bin) and SC(Bin)

differ significantly since they reflect various ways of

thinking about similarities.

2.3 Our approach: LOS similarity data example

In our method, we want to factorize matrix S with objects’

similarities by finding the matrix V such as V � VT = S. In

contrast to the previous example, here, both matrices S and

V include LOS values. It seems that this approach is more

realistic than the one employing only binary relations. We

modified the binary example presented above, i.e., the

objects–attributes relations are given on an ordinal scale by

means of natural language expressions, that is, low, med-

ium (med), and high represented by numbers 1, 2, and 3,

respectively. Table 2 contains possible data under these

assumptions.

2.3.1 Liberal pattern of similarity derivation

By applying the schemes of thinking from the binary vari-

ables case and using similar logical expressions, one may try

to construct similarities matrices for LOS values. Obviously,

it is not possible to use the same logical operators as they are

only defined for binary variables. The natural extension of the

matrix Boolean product is a max–min operation, where OR

corresponds to max and AND to min. Within the sets theory,

the summation is replaced by the max operator, whereas the

multiplication by the min one. It can be noticed that the

Boolean matrix product is just specific case of the max–min

operation. This type of a construct is used as a method of

relations composition, especially in the area of fuzzy sets and

fuzzy logic (e.g., [58–60]).

In ‘‘Appendix 1,’’ we show that the max–min operation

can be used for constructing LOS similarities analogously

as in the Boolean data example. The similarities matrix is

created by means of a union of objects’ similarities rela-

tions with respect to individual attributes (simple or com-

plex). Such a procedure is equivalent to performing max–

min product of V and VT. The neuromatrix V may contain

single vectors of objects–attributes relations or vectors

being a logical combination of two or more attributes like

in the second scheme of eliciting objects’ similarities.

Irrespective of the procedure of determining objects’

similarities, we assume that each object is fully similar to

itself; therefore, diagonal items have the highest similarity

scale value. Additionally, we assume that object i is similar

to j with the same extent as object j to i; thus, the simi-

larities matrix is symmetric.

Applying the L_LPSG pattern of eliciting similarities

and performing the same max–min operation as in the

binary example (V � VT) on vectors from Table 2, we get

(9):

a
b
c
d
e
f

3 1 2 1

2 1 1 3

1 3 2 1

1 2 2 3

2 1 3 1

1 3 2 2

2
6666664

3
7777775

l s w n

�

l
s
w
n

3 2 1 1 2 1

1 1 3 2 1 3

2 1 2 2 3 2

1 3 1 3 1 2

2
664

3
775

a b c d e f

¼

a
b
c
d
e
f

3 2 2 1 2 2

2 3 1 3 2 1

2 1 3 2 2 3

1 3 2 3 1 2

2 2 2 1 3 2

2 1 3 2 2 3

2
6666664

3
7777775

a b c d e f

¼ SLðLOSÞ: ð9Þ

Table 2 Sample LOS intensities of objects–attributes relation

Sticks Length attribute Width attribute

Long (l) Short (s) Wide (w) Narrow (n)

a High (3) Low (1) Medium (2) Low (1)

b Medium (2) Low (1) Low (1) High (3)

c Low (1) High (3) Medium (2) Low (1)

d Low (1) Medium (2) Medium (2) High (3)

e Medium (2) Low (1) High (3) Low (1)

f Low (1) High (3) Medium (2) Medium (2)
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2.3.2 Conservative pattern of similarity derivation

The second way of eliciting similarities presented in this

paper starts with determining combined vectors for

objects–attributes relations. For this purpose, instead of

binary AND we use the min operator (denoted by \). Thus,

a vector representing sticks that are long and wide contains

minimal values from columns long and wide from Table 2.

Applying this procedure for all combinations of attributes,

we obtain (10):

a
b
c
d
e
f

2

2

1

1

2

1

2
6666664

l\ w

1

2

1

1

1

1

l \ n

1

1

2

2

1

2

s \ w

1

1

1

2

1

2

3
7777775

s \ n

: ð10Þ

Using the second scheme of thinking (C_LPSG) leads to

the following similarities matrix (11):

a
b
c
d
e
f

2 2 2 2 2 2

2 2 1 1 2 1

2 1 2 2 1 2

2 1 2 2 1 2

2 2 1 1 2 1

2 1 2 2 1 2

2
6666664

3
7777775

a b c d e f

¼ SCðLOSÞ: ð11Þ

2.4 Our approach characteristics

In the binary example, we presented two natural ways of

obtaining similarities between objects. It can be observed

that in this LOS example, other logical patterns of deter-

mining objects’ similarities may be specified. It stems from

the fact that attributes are not necessarily disjunctive. For

instance, object f in Table 2 was rated by an expert as

partly wide and partly narrow at the same time. Thus, one

may deem natural to specify similarity based on a combi-

nation of three or more attributes instead of only two of

them.

The examples described above show how to obtain a

matrix of similarities in a natural and logical way both for

the binary and for the LOS variables. There are a number

of issues that require discussion and clarifications. First, the

patterns of determining similarities between objects based

on processing their attributes do not represent all possible

ways of doing that. Secondly, some may argue that they are

not always consistent with various psychological models of

assessing similarities. For example, it is easy to see that the

application of L_LPSG does not always preserve the

transitivity of relations in a similarity matrix, which is

often assumed or is desirable in psychological studies. It

may happen that according to an expert, object a is similar

to b with respect to the length attribute, b is similar to

c with respect to the width attribute; but that does not

necessarily mean that a should be similar to c because it

may have different length and width.

In contrast to L_LPSG, the more conservative C_LPSG

approach guarantees similarity matrix transitivity for bin-

ary data. It results from the assumption about the attributes’

disjunction and the similarity construction that requires

identical attributes for similar objects. The application of

the min operation for combining logically attributes may

raise doubts and provoke discussions. Referring to the

sticks example, let us consider the situation where an

expert evaluated the intensities of attributes using LOS

(low, medium, high) as in Table 3. Determining the simi-

larities matrix according to the rule ‘‘sticks are similar if

they are long and wide,’’ we obtain (12):

a
b
c
d
e
f

3 1 1 2 1 2

1 3 1 1 1 1

1 1 3 1 1 1

2 1 1 3 1 2

1 1 1 1 3 1

2 1 1 2 1 3

2
6666664

3
7777775

a b c d e f

: ð12Þ

It can be observed that although objects b and c have

identical measures of intensities for the long and wide

attributes (the first and second column of Table 3), their

similarity is specified at the lowest level. On the other

hand, objects a and f differ in their attributes’ intensities,

but are assessed as more similar than objects b and c, where

the attributes’ intensities are the same.

This seemingly paradoxical result may be interpreted in

favor of the min operation. It can be treated as a cautious

(pessimistic) similarity assessment in a situation when an

expert is not fully convinced that the given attribute

characterizes the specific object. For instance, sticks b and

c are rated as being long to the same, smallest extent, and

as medium wide. Though both features are measurable, an

Table 3 Sample LOS intensities of objects–attributes relation show-

ing that lower values are less important in our similarity assessment

model

Sticks Long (l) Wide (w) l \ w

a High (3) Medium (2) Medium (2)

b Low (1) Medium (2) Low (1)

c Low (1) Medium (2) Low (1)

d High (3) Medium (2) Medium (2)

e Low (1) Low (1) Low (1)

f Medium (2) Medium (2) Medium (2)
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expert could assign the small length value both to the short

sticks and to the very short ones. Likewise, the medium

width could represent slightly less than medium width

sticks or somewhat wider than medium width sticks. When

attributes are hardly to measure or even categorical, such

an approach could be even more convincing. If we were,

for example, to assess the sticks’ colors and specify the

attribute as blue, then small level of this feature could be

attributed both to navy blue and to teal blue. In such a case,

for a sensitive person, these two colors may not be similar.

Generally, in the max–min approach, higher levels of a

specific attribute intensities (or a combination of many

attributes) in both compared objects increase their degree

of similarity.

The way of constructing similarities matrices based on

the C_LPSG pattern is in concordance with the general

idea of the feature set model of similarity—the contrast

model proposed by Tversky [61]. In this approach, the

similarity determination is described as a feature matching

process. The model defines the similarity between objects

as a linear combination of the measures of their common

and distinctive features. In the conservative scheme of

constructing objects’ similarities based on attributes/factors

(C_LPSG) presented here, only common features are taken

into account.

Despite all restrictions, the possibility of explaining

objects’ similarities subjectively expressed on LOS by

factors represented on the same type of scale is attractive

cognitively and practically. Obviously, the presented above

examples are simple and assume full knowledge about

objects’ attributes. However, our real task being subject to

analysis in this paper is the process reverse to that pre-

sented in the above examples. We try to find unknown

neuromatrix V containing factors that reproduce the simi-

larities matrix S which is known and has been, for example,

acquired from an expert or a group of experts in real

contexts.

Based on the extensive theoretical considerations pre-

sented in this section, we employ the max–min product of

neuromatrix vectors V with their transposed values to

produce (reconstruct) the input matrix of similarities. The

general idea is presented in Fig. 1 and can also be

expressed as (13):

V objects-factors; n� kð Þ � VT factors-objects; k � nð Þ
¼ S objects-objects; n� nð Þ:

ð13Þ

Our idea is similar to the PCA concept where orthogonal

eigenvectors reconstruct a square symmetric matrix con-

taining either correlations or covariations. Researchers

usually take advantage of this approach to reduce the

correlation or covariations matrix and represent it by as few

eigenvectors as possible, trying to reproduce the original

matrix as close as possible. In our approach, the input is

also square and symmetric, but all the similarity values are

measured solely on a LOS and they can be represented

neither by correlations nor by covariances. Furthermore,

we confine solely to max, min, AND, OR operators.

However, our main goal is similar to PCA and we want to

represent the complex similarity matrix by a simpler

structure consisting of reconstructing vectors that would

make the data interpretation easier.

Usually in real contexts, attributes’ assessments, such as

those given in Tables 1 and 2, are not available. What is

more, the experts’ ways of thinking (L_LPSG, C_LPSG or

others) are also not known. When in such circumstances,

one finds a decomposition that reconstructs the similarities

matrix well, the interpretation of the factors may be a kind

of art, which often takes place in the classic factor analysis

(FA) or various types of multidimensional scaling (MDS).

It seems to be justified to presume that better decomposi-

tions signify that the similarity determination mechanism

was closer to the max–min composition of relations model.

In such a case, one may try to interpret the obtained neu-

romatrix in terms of the attributes’ composition by appro-

priate LPSG. Likewise in FA, knowledge about the

analyzed context facilitates possible factors’ explanations

also in our approach. A straightforward mathematical

background used in our approach is demonstrated in detail

in ‘‘Appendix 1’’ using a very simple example.

2.5 Relation to other methods

The method presented in this paper is inspired by the

concepts of FA, MDS, HICLASS, Ordinal HICLASS,

Ordinal FA, and BFA, which were reviewed in the Intro-

duction section. In particular, the proposal is similar to the

Fig. 1 Schematic illustration of our approach to employ the max–min

product of neuromatrix vectors V with their transposed values to

produce (reconstruct) the input matrix of similarities (k B n)
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approach originated from fuzzy logic [39], since in both

cases the input data represent various intensity levels of

similarity relations. In Sect. 2 of our paper, we use ordinal

formal contexts for illustrative purposes, but we do not

directly refer to the formal concepts analysis. The use of

LOS values for describing similarity relationships differ-

entiates our approach form such models as ordinal

HICLASS [37] and ordinal FA [38]. In the latter proposal,

ordinal scales are employed only for defining searched

factors, whereas the matrix being factorized still contains

binary values.

Unlike other models, for example, [62–64], in our pro-

posal the formal contexts represented by objects–attributes

relationships are not known. In the theoretical setup that we

present, we neither generate nor hypothesize about formal

contexts. Since the objects–attributes matrix does not exist

in our methodology, any type of formal concept analysis is

not feasible.

In our approach, we search for unknown factors that

explain similarities between objects presented in a square

matrix containing pairwise comparisons results. These

factors may only, at most, be interpreted as aggregated

properties or combinations of objects’ attributes which are

not known, whereas in formal contexts, objects’ attributes

are explicitly specified and known before any analysis is

conducted.

What is unique in our method is the use of LOS data

along with applying only max and min operations in

reconstructing the initial matrix. Such a procedure is a

generalization of the BFA which is a kind of an extension

of the classic FA idea to categorical data. It can also be

compared to the association relation in the HICLASS

model for ordinal-scale variables, or to the similarity

relationship analysis in the fuzzy context and fuzzy concept

lattices developed by Belohlavek [39] and extended later

by Belohlavek et al. [40–42].

In contrast to the latter approaches, where one analyzes

the existing, well-specified fuzzy formal context, we try to

find the unknown LOS context, a neuromatrix, understood

as an objects–factors relation. Since we take advantage of

the simple max–min relations for reconstructing the simi-

larity matrix, there is no need for using multivalued logic

formulas, as it is the case in fuzzy concepts approaches.

In general, we search for one objects–factors matrix

V (objects–factors, n 9 k) that reconstructs a square and

symmetric matrix S (objects–objects, n 9 n) of similarities

between objects rated on an ordinal scale. Thus, we want

V (objects–factors, n 9 k) � VT (factors-objects,

k 9 n) = S (objects–objects, n 9 n). In proposals of

Belohlavek and colleagues concerned with Boolean factor

analysis and factor analyses involving formal concepts, the

input data consist of relationships between objects and

attributes. The set of objects, attributes, and their

relationships are called a formal context and can be con-

veniently presented in a form of a matrix: I (objects–at-

tributes, n 9 m). Based on this input, two additional,

distinct matrices are searched for, i.e., A (objects–factors,

n 9 k), and B (factors–attributes, k 9 m). The relation

between these components is (14):

I objects-attributes; n� mð Þ ¼ A objects-factors; n� kð Þ
� B factors-attributes; k � mð Þ;

ð14Þ

which is totally different than in our proposal.

We provide only one matrix V (objects–factors, n 9 k)

as an output. The only similarity is the correspondence

between our matrix V (objects–factors, n 9 k) and matrix

A (objects–factors, n 9 k) from formal concepts approa-

ches. Matrices I (objects–attributes, n 9 m) and B (factors-

attributes, k 9 m) from formal concepts decompositions do

not appear in our approach, whereas our matrix S (objects–

objects, n 9 n) is not present in papers regarding decom-

positions of fuzzy contexts both in their fuzzy and Boolean

versions and all of their modifications.

Finding factors that try to explain the ordinal-scale

similarity matrix is also a main purpose of MDS or non-

metric linear FA concepts [49]. In this trend, all the com-

putations are based on dissimilarities that are represented

as distances in a multidimensional space, whereas in our

technique we are operating directly on LOS similarity

intensities between objects.

3 Algorithm proposal for decomposing
the LOS similarity matrix

To apply the demonstrated idea to practically seek data

structure and reduce problems’ dimensionality, it is necessary

to develop a procedure of finding the reconstructing vectors. It

would be ideal if such a procedure provides a full decom-

position of any square and symmetric LOS data matrix, like it

is the case in PCA. However, despite many attempts, we were

not able to devise any deterministic algorithm for finding the

full decomposition of such an array. Therefore, we present

a heuristics that does not guarantee finding the vectors that

fully reconstruct the initial matrix.

The general idea of our procedure is summarized in

Algorithm 1, which takes as input LOS similarities inten-

sities between all pairs of objects and outputs a neuroma-

trix with reconstructing vectors and ordered reconstructing

vectors. Our procedure does not require defining any

parameters.

The key point in the presented process of finding the

solution is connected with the observation that within the

suggested fuzzy-set theory framework negative values do
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not appear. Therefore, if big values are included in the

reconstructing vector at the beginning of the procedure,

there will be no possibility to decrease the values from the

reconstructed matrix by remaining vectors. If one imagines

the initial similarity matrix values as cuboids laid down on

a plane, where each cuboid consists of the number of

unitary cubes corresponding to the degree of similarity

between a pair of objects, then the process of recon-

structing such a structure is just the superposition (max

operation) of quasi-rank-one matrices created by applying

the min operation on consecutive reconstructing vectors.

Algorithm 1: Finding reconstructing vectors for LOS similarity

matrix

Input: LOS similarity matrix (square, symmetric) to be reconstructed

S

Output: LOS neuromatrix with reconstructing vectors V

Procedure:

Step
1

Construct and initialize primary variables. Fill V with zeros

and insert columns’ maximal values from S into the

diagonal of V.

Step
2

Perform the decomposition. Search for reconstructing vectors

values V by sequentially processing items from the

similarity matrix S and compute auxiliary matrices. Repeat

it for all columns in S.

2(a) Compute auxiliary matrices: P denotes a matrix with

currently predicted values defined as Vcurrent � Vcurrent
T , R is

a matrix with residuals equal S – P, and H is a hint matrix

defined as hij = 0 if rij = 0, else hij = sij.

2(b) Select a column in H with the minimal value. If multiple

columns satisfy the criterion, take the one with the maximal

range. In the case, there is more than one column with the

same range, select the one with the maximal range after

excluding initial maximal values from those columns. If

necessary, repeat the procedure.

2(c) Fill in the selected column by finding the minimal hij
value greater than zero and placing it in the vij and vji
locations. Next, compute the P and R for both locations.

If there are no negative values in R in only one those

locations choose this location.

If in both cases there are no negative values in R, pick the

location for which the sum of column values from S is the

biggest.

If in both cases in R there are negative values choose the

one with the smallest absolute sum of negative residuals.

Step
3

Fine-tune the decomposition. Improvements to the initial

solution by making small, local changes to values of V.

Vinc: For each vij repeatedly add one until the sum of absolute

values of all residuals is getting smaller or a negative

residual appears in R.

Vdec: For each vij repeatedly subtract one until the sum of

absolute values of all residuals is getting smaller or a

negative residual appears in R.

Step
4

Order the reconstructing vectors. Rearrangement of

determined V vectors in a descending order of their

importance in reconstructing input matrix S. At first, find

this reconstructing vector, for which the rank-one matrix

(v � vT) is the closest to the initial data, i.e., the sum of

absolute values of all residuals is the lowest. Then, find the

next reconstructing vectors in a decreasing order by

checking unions of previously determined rank-one

matrices with every candidate from the remaining set of

vectors, and selecting this combination which gives the best

approximation of S.

Given the problem with additive nature of the max–min

operations, the proposed heuristic tries to find such values

for reconstructing vectors that, from one hand side,

reconstruct as much as possible, but on the other hand they

do not produce bigger ratings in other places of the pre-

dicted matrix than their equivalents in the initial similarity

matrix.

In our method, we use integer values; however, one

should bear in mind that these values represent LOS vari-

ables just like in the ‘‘Appendix 1’’ example. In a computer

program that implements this algorithm, the matrix S con-

tains the initial LOS similarity values; the V neuromatrix

includes the searched reconstructing vectors. Additionally,

we use three other types of matrices. The predicted (re-

constructed) matrix which is computed by the max–min

multiplication of the current reconstructing vectors and

their transposes P = Vcurrent � Vcurrent
T . The matrix of

residuals is calculated as R = S – P. If R contains only

zeros, then the V � VT fully reconstructs S. The hint matrix

H that stores those items from S which are not fully

reproduced (the residual does not amount to zero) by the

current reconstructing vectors. So, if rij = 0, then hij = 0;

else, hij = sij.

Some other procedures could be applied for fine-tuning

the decomposition, e.g., instead of adding or subtracting

repeatedly ones, a combination of adding and subtracting

may be used. We also propose here only one of the possible

ways of ordering the reconstructing vectors which, how-

ever, does not guarantee finding the best vector arrange-

ment. One may devise different heuristics or, at the

expense of computing time, check all combinations of

column arrangements.

To give the user idea to what extent the individual

vectors reconstruct the input matrix, the relative impor-

tance and cumulative relative importance are used. They

are computed for a given vector as a percentage value of:

(sum of absolute differences from the matrix reconstructed

by the given vector minus the sum of absolute differences

resulting from reconstructing the initial matrix by all pre-

vious vectors) divided by (the maximal possible sum of

absolute differences). The consecutive relative importance

say by what percentage the initial matrix will be better

reconstructed if the given vector is included in the solution,
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while all preceding reconstructing vectors are also used.

The cumulative relative importance can be interpreted as

the percent of the input matrix reconstruction. The full

reconstruction occurs when the cumulative relative

importance is equal to 100%.

Likewise eigenvalues from the classic approach, the

relative importance is used for assessing the usefulness of a

given vector in reconstructing S, but their interpretation is

different and they should not be confused. Eigenvalues are

always associated with their eigenvectors. Here, the rela-

tive importance depends on the reconstruction degree of

S produced by preceding vectors from the ordered matrix.

The sum of consecutive relative importance shows to what

extent the initial matrix is reconstructed, but we cannot say

that the reconstructing vectors here are orthogonal. They

cannot be treated as eigenvectors, and they do not con-

tribute irrespective of other vectors. Changing the order of

column vectors in the neuromatrix V would not change the

overall reconstruction quality. Residuals will be the same.

It results from the fact that the quasi-rank-one matrices

produced by individual reconstructing vectors are joined by

the union operator which provides the same predicted

matrix irrespective of the rank-one matrices order.

In methods like FA, MDS, and our approach, where the

initial data matrix is to be represented by a restricted

number of dimensions/vectors, there is a problem with

determining the final model, i.e., the number of recon-

structing vectors in our case. The final model should

reproduce S as well as possible, but the number of recon-

structing vectors should be as small as possible to provide

clear and reasonable interpretations of the underlying data.

There have been already different solutions proposed in

various methods to tackle this problem. They range from

a very simple approach like the Kaiser’s heuristic [65]

which advices retaining vectors in FA with eigenvalues

greater than one, to more complex ones put forward by, for

example, Ceulemans and Kiers [66], Preacher et al. [67],

Wilderjans et al. [68]. The discussion of strategies that

could be applied in such situations was provided, for

example, in [36, 69–71].

In our approach, the values in reconstructing vectors

should be interpreted as the degree of similarity of a given

object with the object’s attribute (factor) represented by a

given reconstructing vector. We assume that the LOS range

is the same for all reconstructing vectors. In classic FA, the

factor loadings are just correlations between an object and

the hidden factor. Likewise in classic FA, one needs to

specify the threshold at which the similarity intensity is

high enough and the value for which it should be consid-

ered as not meaningful. In the literature regarding FA,

various recommendations may be found in this regard.

According to some researchers, 0.3 is treated as the mini-

mal value for a factor loading [72, 73], whereas others

classify 0.70 or above as high and 0.5 or lower as low [74].

One of the most popular approaches involves using an

absolute value of 0.4 as a cutoff and interpret values of 0.6

as high [72, 75]. Analogically to the recommendations used

in FA, we propose to use the similarity scale range median

as a threshold in our approach. For example, for nine items

LOS with increasing intensities, values bigger than the fifth

value will denote a significant degree of similarity between

a given object and the specific attribute represented by the

reconstructing vector.

As mentioned above, the final model should be as par-

simonious as possible and provide reasonable degree of the

initial matrix reconstruction. Thus, again some recom-

mendation regarding the acceptable value would be useful.

Peterson [76] compared real FA metadata with randomly

generated data, and based on the results advocates

searching solutions in which the variance explained by the

factors exceeds 50%. In our case, instead of variances we

use cumulative relative importance that is significantly

different but also provides information on how good the

approximation is. Given the exemplary data provided in

Sect. 4 and experiences from simulation studies presented

in Sect. 5, we would rather recommend pursuing solutions

with cumulative relative importance higher than 80%. It is

also worth noting that our method works for symmetric and

asymmetric data. The predicted matrix is always symmet-

ric, and the algorithm tries to find such a symmetric

approximation of asymmetric data that the absolute sum of

residuals is the lowest.

4 Practical examples

Here, we present two different examples showing how the

suggested method may be applied and used for drawing

conclusions regarding similarities between objects and

reconstructing vectors. These examples are well known in

the literature regarding MDS, and the original raw data are

easily available. Both of them deal with similarities

expressed by humans during pairwise comparisons on

ordinal scales.

4.1 Perceived colors’ similarities

Ekman, in his work [54], asked participants to assess the

degree of similarity between 14 colors. Stimuli were dis-

played in pairs and subjects rated the qualitative similarity

on a five-step scale. He rescaled the results to the [0, 1]

interval range and applied FA treating these data as cor-

relations. Ekman presented a five-dimensional solution that

decently reconstructed the initial quasi-correlation matrix.

The obtained eigenvectors were identified as: violet, blue,

green, yellow, and red.
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Shepard [55, 56] reanalyzed Ekman’s data using his

nonmetric MDS approach which resulted in two dimen-

sions. He also proved that in this case the relationship

between similarities and distances are not linear.

Ekman’s and Shepard’s original analyses were per-

formed on rational data. Our methodology, by definition,

cannot be applied for other than ordinal data. Thus, to make

the comparisons more logical we transformed the rational

data into ordinal ones by multiplying them by 10 and

rounding to whole values. The transformed data are given

in ‘‘Appendix 2’’. Then, we reproduced Shepard’s result for

ordinal data using classic nonmetric MDS with a standard

stress value as a goal function, in a MATLAB 7.11.0

(R2010b) version. The outcome, illustrated in Fig. 2, was

next compared with the solution provided by our method-

ology (Table 4).

The application of two versions of our algorithm to these

data resulted in finding two different decompositions where

one of them was able to fully reconstruct the initial data.

The ordering of the obtained vectors (cf. Table 4) shows

that the similarity matrix can be reconstructed in 83% by

only three vectors, which can be interpreted as red, blue,

and green.

The obtained results seem to be qualitatively different

from both Ekman’s FA which suggested five dimensions

and the Shepard’s [55, 56] two-dimensional solution. The

Ekman’s approach was correctly criticized by Shepard for

using rescaled similarity ratings as correlations (scalar

products). In our approach, we do not use correlations, but

proximity measures and, like Shepard, we do not assume

a linear relationship between similarities and distances.

Additionally, unlike Shepard, we do not ‘‘get something

from nothing’’ which is the case in the Ekman’s and

Shepard’s approaches. Ekman obtains precise points in

multidimensional Euclidean space from similarities rated

on a five-step scale, whereas Shepard provides metric

representation based solely on a nonmetric rank order of

those proximity measures.

Both previous approaches applied to this experiment

assume that people think in terms of dimensions while

performing similarity judgments and/or they are aware that

such dimensions exist. This, however, might not be true, all

the more that in this specific example the colors were

presented only in pairs and subjects could not see the

broader picture of the whole experiment. There is another

problem with the Shepard’s solution: How to interpret the

identified dimensions? Although the graphical representa-

tion (Fig. 2) resembles to some degree the Newton’s color

circle, Shepard did not provide substantive and convincing

explanation of these two dimensions. The idea of a color

circle is to provide a color hue categorization and sum-

marize the additive (subtractive) mixing properties of the

so-called primary colors: red, green, and blue (cyan,

magenta, yellow), but there were significant problems with

identifying color physical properties in two-dimensional

Euclidean space. From the perceptual point of view,

attempts of representing color hues in a two-dimensional

Euclidean space resulted in creating the CIE Lab color

system [77] where the equal Euclidean distances between

color hues correspond approximately to similar differences

in their human subjective perceptions. The Shepard’s

solution seems to be more similar to this approach than to

classic color circles. The CIE Lab space is obtained by

linear transformations of human photoreceptors sensitivity

to red, green, and blue light components. Since the cones

sensitivity functions are not straightforward, the system is

far from being perfect. In light of the above, it is quite

possible that the process of judging color similarities

depends more on physical properties of three different

types of retina’s cones (red, green, and blue) than the

artificially created two-dimensional CIE Lab space for the

color hue. The process of estimating the colors’ similarities

could have been simpler and not based on a dimensional

idea. We may try to assign (compare, categorize) a given

hue to one of the well-known primary colors. In this sense,

our approach and the solution proposed by Ekman would

be more appropriate than the Shepard’s analysis.

Shepard argues also that his two-dimensional solution

accounts for as much as 84% of the overall variance which

is much better than the reconstruction obtained by the first

two (unrotated) Ekman’s dimensions (about 64%). How-

ever, according to Kruskal’s recommendations [47], only

Fig. 2 Illustration of Shepard’s solution [55, 56] to Ekman’s colors

similarities experiment [54]. Colors were generated by Spectra

software, which converts the wave lengths to the RGB color system

[118] (color figure online)
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the stress value around 0.05 corresponds to a good-quality

solution (10% fair, 20% poor). Naturally, adding another

dimension improves the solution’s quality, but then the

problem with interpreting dimensions is becoming even

bigger since neither the color saturation, nor lightness

(brightness) was controlled in this experiment. Our solution

based on three attributes exhibits comparable degree of

initial values reconstruction as Shepard’s two-dimensional

or Ekman’s five-dimensional solutions and allows for

analyzing the experimental data from a different point of

view.

4.2 Perceived nations’ similarities

The original data from the Kruskal and Wish example

[57], p. 31 were collected from a group of 18 students who

rated each pair of 12 countries (Brazil, Congo, Cuba,

Egypt, France, India, Israel, Japan, China, former times

USSR, USA, and former times Yugoslavia) on a scale from

1 ‘‘very different’’ to 9 ‘‘very similar.’’ The authors pro-

posed the following interpretation of the three obtained

dimensions: I—Political alignment (noncommunist–com-

munist), II—Economical development (developing–devel-

oped), and III—Geography and culture (East–West).

A nonmetric MDS with a standard stress value as a goal

function performed for this three-dimensional solution in

a MATLAB 7.11.0 (R2010b) version provided data illus-

trated in Fig. 3.

For the purposes of our approach, the original similarity

data were rounded and rescaled such that the minimal value

equals one, whereas the maximal scale value amounts to

seven. They are given in ‘‘Appendix 3.’’ Ordered recon-

structing vectors provided by our heuristic algorithm are

presented in Table 5.

The results of our analysis provide an alternative solu-

tion to the one obtained by nonmetric MDS. The first four

reconstructing vectors from Table 5 are able to reconstruct

the initial nations’ similarities in 89.2%, and they may be

interpreted as follows: communist or former communist

countries (v3): Cuba, China, Yugoslavia, USSR; countries

having nuclear weapons (v10): USSR, France, USA;

developing countries (v6): Congo, Egypt, India, Cuba;

Table 4 Ordered reconstructing vectors with relative importance for the example with colors [54] (color table online)
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closely cooperating countries in military and economic

areas (v7): USA, Israel, Japan. The military associations

seem to be quite justifiable since the study was conducted

at the time when the issues regarding the cold war, arma-

ment race, or Vietnam War were very popular and con-

stantly present in various media.

The proposed interpretations of dimensions in the non-

metric MDS solution generally seem to be correct; how-

ever, if we take closer look on the presented data we would

see that the data are sometimes difficult to interpret within

the Euclidean space. For instance, China seems to be

decidedly more communist than USSR and Cuba; or Japan

is significantly less noncommunist than Brazil, which

seems to be even more anticommunist than the USA.

The axes rotations do not make the interpretations much

easier. It should also be noticed that the standard stress

value for this three-dimensional MDS solution amounts to

0.1044; only after adding the fourth dimension, the stress

reaches 0.049, which is deemed as a good-quality solution

according to [47].

Given the above, it is not clear whether participants in

this experiment judged similarities using the dimensional

approach. As it can be seen from our analysis, the under-

lying nations’ similarities structure could equally come

from the way of thinking resembling the max–min opera-

tions performed on the identified attributes.

Fig. 3 Nonmetric MDS three-dimensional solution for a nations’ similarities example of [57, p. 31]
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5 Simulation studies of the proposed
algorithm

5.1 Brute force simulations

We applied the brute force simulations to extend our

knowledge about the nature of the problem, its sophisti-

cation degree, and to provide a basis for comparison with

our heuristics. We assumed that the number of recon-

structing vectors is equal to the number of objects; thus, the

reconstructing matrix has the same dimensions as the initial

data array.

The number of all possible solutions (nsol) depends on

the number of analyzed objects (nobj) and the number of

LOS items employed (nLOS) and can be calculated in the

subsequent way:

nsol ¼ n
n2

obj
�nobj

LOS :

Table 6 contains the number of variations for various

matrix dimensions and number of LOS items. The condi-

tions in italics presented in Table 6 were analyzed by a

brute force algorithm. For those cases, we generated 1000

random squared and symmetric similarity matrices with

LOS data and verified all possible variations of max–min

products for each of them. Additionally, we examined the

possibility of reconstructing matrices bigger than 5 9 5

with various nLOS by taking advantage of less number of

vectors than the initial matrix dimensions. We confined

only to such combinations of nLOS, matrix size, and number

of reconstructing vectors when the number of variations

was lower than 16 million. Other conditions were not

analyzed since they required too much computation time.

The results of our simulations are put together in Table 7

and show percentages of fully decomposed matrices (PDF)

for each combination of a matrix size, nLOS, and the

number of reconstructing vectors applied.

For the following matrices: nLOS = 2, nobj = 11–20;

nLOS = 3, nobj = 8–13; nLOS = 4, nobj = 7–11; nLOS = 5,

nobj = 6–10; nLOS = 6, nobj = 5–9; nLOS = 8, nobj = 5–8,

the decomposition by one reconstructing vector was not

found. For these matrices, bigger numbers of vectors were

not analyzed due to a great number of variations and

unacceptable time of simulations.

The presented brute force results show that the 3 9 3

matrix size and the full reconstruction were possible for all

randomly generated matrices and analyzed nLOS (from 2 up

to 10) by 3 or 2 reconstructing vectors. Matrices 4 9 4

were fully reconstructed at all times by 4 vectors for

Table 5 Ordered reconstructing vectors (neuromatrix) with relative importance for the example with nations’ similarities [57, p. 31]
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nLOS = 2–4. It was not possible to check whether this result

is also true for larger nLOS since the nsol was too big. The

most interesting result was obtained for the matrix 5 9 5

consisting of values represented on a binary scale (nLOS-

= 2, cf. Table 7). It occurred that even 5 vectors are not

enough to fully reconstruct the initial matrix in all cases.

5.2 Performance of the proposed heuristic
algorithm

The effectiveness of our heuristic procedure was examined

by performing a simulation experiment. We applied our

approach to randomly generated matrices with various

combinations of their dimensions and scales. We examined

two factors: the matrix dimension and the rating scale type.

Matrix sizes ranged from 3 9 3 up to 13 9 13 (11 levels),

whereas nLOS varied from 2 up to 10 (9 levels). The applied

within-subjects design produced 99 different experimental

conditions. For every combination of the matrix size and

nLOS, we generated 1000 symmetric matrices. We tried to

decompose each of the total 99,000 random matrices by

our heuristic procedure. We recorded the highest percent-

age of the initial matrix reconstruction obtained by

applying both versions of the tuning-up procedure. Matri-

ces 3 9 3 and 4 9 4 with nLOS from 2 to 10 were fully

decomposed for all randomly generated matrices. The

remaining results of our simulations presenting PDF and

mean percentages of initial matrix reconstructions (MPR)

are put together in Table 8.

The simulations show that our heuristic procedure was

able to decompose all randomly generated small matrices.

This result is the same as applying brute force algorithm.

For more complex data, the percentages of full recon-

structions gradually decrease. For matrices bigger than

6 9 6 and nLOS bigger than 3, the possibility of the full

decomposition drops radically far below 50%. If the matrix

is bigger than 8 9 8 and nLOS is bigger than 2, then there is

almost no chances of getting the full decomposition by our

approach. We additionally performed simulations for

14 9 14 and 15 9 15 matrices including data with nLOS-

= 2. In these cases, none of randomly generated similari-

ties’ matrices was fully decomposed by our algorithm.

However, it is not known whether such full decompositions

exist at all for those similarity data.

One should notice that the mean percentage of recon-

struction is quite high. Even for the most difficult experi-

mental condition, the value is higher than 90%. The mean

percentage of reconstruction for 14 9 14 and 15 9 15

matrices with nLOS = 2 amounted to 92.6% (2.33) and

92.3% (2.33), respectively.

6 Applications

The presented method may be widely used in these fields of

science in which human perception is involved to judge

directly about similarities. It could be especially suited and

practically applied in situations where humans are judging

objects’ similarities in pairwise comparisons, using ordinal

Table 6 Number of variations when the number of reconstructing

vectors is the same as the number of objects

nLOS Matrix size

3 9 3 4 9 4 5 9 5

2 64 4096 1,048,576

3 729 531,441 3.5 9 1009

4 4096 16,777,216 1.1 9 1012

5 15,625 2.4 9 1008 9.5 9 1013

6 46,656 2.2 9 1009 3.7 9 1015

7 117,649 1.4 9 1010 8 9 1016

8 262,144 6.9 9 1010 1.2 9 1018

9 531,441 2.8 9 1011 1.2 9 1019

10 1,000,000 1012 1020

Conditions in italics were analyzed by a brute force algorithm

nLOS – number of LOS items

Table 7 Percentages of fully decomposed 1000 random similarity matrices by a brute force algorithm
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scales, such as the Likert’s or linguistic ones. They may be,

for instance, concerned with benchmark studies in man-

agement and marketing like in the HATCO company

comparison with nine competitors [72], psychological

studies regarding cognition or memory [78–80], or psy-

chological analyses of human perception like in the

research on differences between adults and children in

recognizing body parts similarities [81].

Our proposal assumes that people apply max–min

approach on attributes. We demonstrated that in some

experimental data applying this method may provide dif-

ferent explanations than dimensional approaches based on

Euclidean spaces which are used in classic nonmetric MDS

or other FA-like methods.

The suggested, nonstatistic, and nonmetric approach can

be applied to any ordinal variables where consecutive

values correspond to the perceived level of similarity

intensity. A granularity resolution, i.e., scale range, can be

freely chosen as it neither affects the theoretical basis nor

the described heuristic algorithm. The number of expres-

sions describing similarity levels may, in practice, refer to

experts’ sensitivity to tell similarities between objects in

a specific context.

Reconstructing vectors from our proposal might be

interpreted as counterparts of the fuzzy formal contexts.

One can apply formal concept analysis to these results for

further detailed examination of relations between factors

and objects. However, even not using formal analysis, our

reconstructing vectors allow for retracting knowledge

about factors shaping similarity assessments. It seems

particularly important to look for such hidden relations in

various practical areas. For example, factors affecting the

perception and cognition of visual stimuli are a particular

focus of marketing and neuromarketing (see [82–87]).

Specifying reliable objects–attributes relations that under-

lie similarity perception could facilitate the design of more

effective graphic marketing messages used in product

packages that will stand out from their competitors or

advertisements.

7 Future studies

There are some research questions regarding our proposal

that should be answered in future studies. They concern

detailed properties, practical usefulness, and methodologi-

cal correctness.

7.1 Algorithmic extensions

Some prospective studies can enclose simulation research

on markedly more complex examples, with numerous

attributes contributing to peoples’ perceptions. For suchTa
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significantly more sophisticated problems with a large

number of possible factors, one could try to combine our

algorithm with the fuzzy formal concept analysis. From the

point of view of the described model per se, investigations

regarding the influence of its properties on the generated

results are of special interest. For instance, how the gran-

ularity of a similarity intensity scale impacts the results

quality for various tasks.

Possible future research may also focus on applying

other than our approaches for determining reconstructing

vectors such as deep learning. Some initial works in this

regard have already been performed for the Boolean matrix

factorization. Frolov et al. [88] used Hopfield-like neural

networks for this purpose. They further extended their

ideas in a series of subsequent publications [89–91]. Input

and output matrices of these approaches are completely

different conceptually than our proposal. Thus, direct

comparisons are not possible. However, creating a deep

learning algorithm similar to the solutions provided by

Frolov and colleagues for similarity matrices containing

ordinal-scale values would be very interesting.

Another direction of extending or improving our algo-

rithm could utilize some latest developments in optimiza-

tion research. Though some analyses emphasize the

complexity of problem of similar types (e.g., [92]), one

may try, for instance, to take advantage of interesting

extensions of classical desirability function optimizations,

especially the approach involving max- and min-type

functions (cf. [93–95]).

7.2 Theoretical advancements

From the theoretical perspective, answering the question

under what circumstances the initial objects similarity

matrix can be fully decomposed is certainly worth pursu-

ing. A possible conjecture is that such a full decomposition

is feasible for matrices where the classic triangle inequality

between all similarity ratings is conserved.

A number of future research directions and projects

could include the development of a methodology that

would deal with multiple similarity matrices. This, proba-

bly shall involve some clustering techniques. For the pre-

sented approach, one should try to determine in which

situations either liberal, conservative models shall be

applied. Moreover, an extension of our proposal may

include other types of theoretical logical relations or their

combinations that have not been demonstrated in this

paper.

There could be a potential trade-off concerned with the

specific feature of our approach that decreases the signifi-

cance of smaller attribute intensities. This might increase

the danger of excluding some factors from the final

reconstructing matrix. The problem may constitute a

limitation of our approach, and some further studies may

focus on determining whether such a phenomenon exists,

and if so, what the scale is.

In recent decades, fuzzy sets have been intensively used

as a tool for uncertainty modeling. It results, among others,

from the nature of phenomena in many areas of interest in

science. It is especially the case in mathematical modeling

of both social and technical issues. The framework pre-

sented in this research allows for advanced analytical

constructions that take into account uncertainty. For

example, linguistic expressions of membership function

values or degrees of truth can be represented as fuzzy sets.

Then, the analysis of similarity relationships would be

based on fuzzy sets of second type. Intensive work on

extending classic approaches to develop models involving

uncertainty can be also seen in construction of algorithms

for solving differential equations. For example, in the

works [96–99], authors propose algorithms that operate on

fuzzy numbers and use the theory of kernel reproduction.

Processing and modeling of imprecision involving similar

approaches seems to be an interesting approach in analyses

related to human behavior. Hence, the cited works suggest

a possible direction of more advanced studies in this field.

Another possible extension could involve definitions of

the acceptation, rejection, and uncertainty levels of simi-

larity while considering given factors or decompositions.

Such modifications are conceptually interesting, despite the

danger of decreasing the precision of the similarity matrix

reconstruction (cf. [40]).

7.3 Validation studies

A significant problem concerned with validation of the

presented methodology is that it is not clear what true

human being’s assessments of similarities are, and how to

identify them. The question is what should be the refer-

ence? Should this be the results of nonmetric MDS, the

structure of neurons activations in the brain? How should

these data be aggregated?—Simple average, Choquet

integral, etc.

Moreover, in a variety of factor analysis types, one can

come up with a number of qualitatively different solutions

having similar goodness-of-fit parameters. In a classic

factor analysis, it can be done by simple algebraic rotations

of eigenvectors. At the end of the day, it is up to the

investigator to select the most logical, theoretically and

practically justifiable solution, from among those possible.

Nevertheless, even without knowing the real true structure

of psychological concepts and relations between them,

these approaches are useful. They are employed very

intensively as they provide, at least, some insight into

psychological constructs.
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Despite the above-mentioned problems, there are some

ways of increasing the belief that the proposal is valid. We

showed on two simple, but well-known examples that the

idea works, that there is a theoretical background related to

how people may think about similarities. The theory cor-

responds logically to the problem we are trying to solve.

From the technical point of view, the put-forward

algorithm for seeking the LOS neuromatrices provided

satisfactory solutions both for real experimental examples

and in decomposing randomly generated data. This may be

considered as a part of an internal validation. The proce-

dure provides reasonable solutions that can be interpreted

logically, but qualitatively differently from the case of

classic approaches. These outcomes can be treated as a

basic external validation.

Naturally, some additional steps may be taken to further

validate our proposal. Given the paper length restrictions,

other, more detailed and comprehensive attempts can be

performed in subsequent studies. In the perspective of

neuroscience, future research could be directed to empiri-

cal investigations at the biological level focused on

checking if the proposed assumptions are reflected in the

brain structures’ activities. Finding patterns of brain func-

tioning could verify the suggested approach at a physio-

logical level. These investigations could take advantage of

brain imaging methods such as PET or fMRI, that occurred

to be very helpful in understanding of various neural-based

processes (cf., e.g., [100, 101]).

It seems that making decisions about similarities based

on hidden factors (neuromatrices) may also influence

visual processing strategies. Using considerably techno-

logically improved and significantly less expensive eye

tracking techniques to study similarity issue is reasonable.

The human visual behavior can be characterized by spa-

tiotemporal oculometric parameters such as saccades and

fixations. Their dynamics may be modeled by hidden

Markov models (cf. [102–108]), their fuzzy equivalents

(see [109–111]), or even Markov switching models (cf.

[112, 113]).

It can be attractive from the cognitive and behavioral

point of view to conduct experiments focused on deter-

mining relations between visual strategies and mechanisms

of making decisions about similarities modeled by neuro-

matrices introduced in this paper. Analogous studies may

also be conducted by other tools used in neuroscience such

as electroencephalography [114, 115], magnetoen-

cephalography, and facial recognition. Reviews and dis-

cussion on the usefulness of various neuroscience methods

can be found, for example, in [116, 117].

Some more classic methods may also be applied for

extended validation purposes. They may include studies

aimed at finding correlations and relations with psycho-

logical constructs with known values of similarities

between objects or concepts of various types. One may

even conduct simulations where similarities would be

generated automatically based on objects’ physical prop-

erties, such as calculated stick lengths. Another new idea is

to include retrospective thinking in the experimental pro-

cedure. In such a case, after assessing similarities, partic-

ipants explain how they evaluated them, what factors were

the most important, and in what way objects’ or concepts’

features influenced subjects’ perception.

8 Conclusion

In this paper, we propose a new approach for modeling

human thinking about objects’ similarities by searching the

neuromatrix. The neuromatrix consists of vectors that

reconstruct the LOS similarity data matrix. We search for

internal data structure using fuzzy-set theory simple oper-

ators. We have shown that given such assumptions, it is

possible to represent the initial matrix as the union of

quasi-rank-one matrices.

Conceptually, we presented a model that reflects cog-

nitive processes taking place in the brain. The process is

demonstrated in the form of linguistic expressions—pro-

vided by a human—about similarities between objects.

Uncovering hidden objects–attributes relations in the form

of neuromatrices is an attempt of specifying factors shap-

ing decisions about those similarities. From the neurosci-

entific point of view, we assume that our approach

discloses components of the cognitive perception mecha-

nism occurring at the neural level.

Technically, our scientific proposal is very closely

related to the idea that underpins PCA, FA, metric and

nonmetric MDS and correspondence analysis, namely the

eigendecomposition of a matrix of real values. Analo-

gously to classic approaches, we have attempted to repre-

sent the initial LOS data matrix as a max–min product of

some other LOS matrix, called a neuromatrix, and its

transpose. In our opinion, such an approach is appropriate

for linguistic based or ordinal data. In the max–min mul-

tiplication, the product of two values is replaced by the

intersection (min) operator, whereas the summation takes

the form of union (max values).

Our methodology is theoretically well grounded and

soundly logically justified. The idea is very simple and is

based solely on max–min operators. We think that such an

approach is closer to real human thinking about similarities

than other methods. The max–min operations are truly

natural as they are in the inner core of humans’ negotia-

tions, games, optimization, orientation and gaining of

perspective. Moreover, our methodology has a tendency to

relatively diminish the significance of smaller attributes’

intensities. This, in turn, fits well to human brain biological
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functioning where neurons are activated and pass electrical

impulse further only if superposition of input signals

exceeds a specific, minimal level. This property of our

methodology seems to be better suited to physiological

structures of the neurons than other approaches. Such a

way of handling similarities is in concordance with intu-

ition. Usually, weights of factors deciding about similari-

ties are nonlinear—some of them are more important than

the others. Those less important ones, probably, have less

impact on the overall perception.

Below, we present a brief list characterizing our

proposal:

• The theoretical foundations are in concordance with the

human thinking about similarities and basic neural

activity.

• The similarity matrix includes only values measured on

an ordinal scale.

• It is possible to decompose the initial objects’ similar-

ities matrices.

• The decomposition uses only max and min operators

and provides reconstructing vectors that can be inter-

preted akin to classic approaches.

• The proposal provides logical results; however, their

interpretation might differ from classic approaches,

which allows for better understanding of the examined

phenomenon.

• Brute force simulation results show that starting from

the 5 9 5 matrices it is not possible to fully decompose

random objects’ similarity matrices.

• Simulation results proved that the proposed heuristic

procedure is able to reconstruct randomly generated

similarity matrices to a very high extent, even for the

most difficult examined cases.

We hope that our proposal would be interesting to other

researchers that could apply it in a variety of contexts and

extend in various directions including those that are indi-

cated in this paper.
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Appendix 1: Constructing LOS similarities
by the max–min operations

In our approach, the standard formula for matrix multi-

plication for every i and j takes the following shape:

cij ¼ max min ai1; b1j

� �
;min ai2; b2j

� �
; . . .;min ain; bnj

� �� �
:

ð15Þ

Replacing the max with [—, and the min with—

\ symbols, the formula may be rewritten as

cij ¼ ai1 \ b1j

� �
[ ai2 \ b2j

� �
[ � � � [ ain \ bnj

� �

¼
[n
r¼1

air \ brj: ð16Þ

For shorthand, we denote the set theory multiplication

by the max–min operator of the two LOS matrices as:

CLOS ¼ ALOS � BLOS: ð17Þ

The transpose of the LOS data array is defined in the

same way as for regular matrices, that means

BLOS ¼ AT
LOS if bij ¼ aji; for each i and j: ð18Þ

To illustrate the introduced symbols, let us consider

a simple 3 9 3 matrix that contains assessments of relative

similarities between three objects X, Y, Z expressed on

LOS {low, med, big}. We additionally assume that each

object is very similar to itself and that if X is similar to Y to

some degree, then the similarity between Y and X is

exactly the same. Thus, we obtain the symmetric matrix

with the maximal similarity values at the diagonal, e.g.,

ELOS ¼
big low big
low big med
big med big

2
4

3
5: ð19Þ

The above matrix may be represented by the max–min

product of the following square (but not symmetric) matrix

and its transpose:

VLOS ¼
big low low
low big med
big low med

2
4

3
5: ð20Þ

In this paper, we call this idea LOS matrix decomposi-

tion, and the column vectors of the LOS matrix—the

reconstructing vectors (neuromatrix)—the equivalent of
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eigenvectors of classical algebra. In this example, we can

check that:

VLOS � VT
LOS ¼

big low low
low big med
big low med

2
4

3
5

�
big low big
low big low
low med med

2
4

3
5

¼
big low big
low big med
big med big

2
4

3
5 ¼ ELOS;

for example:

eLOSð31Þ ¼ max min big; bigf g;min low; lowf g;min med; lowf gf g
¼ maxfbig; low; lowÞ ¼ big;

ð21Þ

eLOSð23Þ ¼ max min low; bigf g;min big; lowf g;min med;medf gf g
¼ max low; low;medf g ¼ med;

ð22Þ

and so on, for every i and j.

To use the approach for dimensionality reduction and

searching for the data structure, it is necessary to check

whether it is possible to represent the initial matrix as a

union (the equivalent of summation in set theory) of outer

products of the LOS vectors. In other words, to perform a

quasi-rank-one decomposition using only the set theory

operators plus the transpose. Let the union (max) operator

for two LOS matrices be defined as follows:

CLOS ¼ ALOS [ BLOS; ð23Þ

where cij = max{aij, bij} for every i and j.
It can be shown that if for the given LOS matrix CLOS

there exists such a LOS matrix VLOS that

VLOS � VT
LOS ¼ CLOS; ð24Þ

then the initial matrix CLOS may also be represented by a

union of the matrices constructed in a similar way as the

outer product in the conventional algebra, i.e.,

CLOS ¼ v1 � vT
1 [ v2 � vT

2 [ . . . [ vn � vT
n ¼

[n
k¼1

vk � vT
k ;

ð25Þ

where

v1 ¼

w11

w21

..

.

wn1

2
6664

3
7775; v2 ¼

w12

w22

..

.

wn2

2
6664

3
7775; . . .; vk ¼

w1k

w2k

..

.

wnk

2
6664

3
7775; . . .; vn

¼

w1n

w2n

..

.

wnn

2
6664

3
7775;

ð26Þ

are the column vectors of VLOS of size n.

Proof of (25) First, according to the product formula

from (16) for a LOS data matrix, each component of

CLOS ¼ VLOS � VT
LOS ð27Þ

may be calculated as:

cij ¼
[n
k¼1

wik \ wT
kj; ð28Þ

where wik is an item of the VLOS array. Because of (18), we

obtain:

cij ¼
[n
k¼1

wik \ wjk: ð29Þ

On the other hand, we state that CLOS can be represented by

a union of outer products of LOS reconstructing vectors

(cf. (25)). Let us denote the individual outer product array

as

Ck ¼ vk � vT
k : ð30Þ

Since vk is a column vector and vT
k is a row vector, there is

only one component from (16) involved in obtaining every

outer product item for the kth array, namely:

wik \ wT
kj: ð31Þ

Due to (18), (31) is equivalent to

wik \ wjk: ð32Þ

Now, making a union of all of the outer products, and

taking advantage of (23) we arrive at the following for-

mula, identical to (29):

cij ¼ wi1 \ wj1

� �
[ wi2 \ wj2

� �
[ � � � [ win \ wjn

� �

¼
[n
k¼1

wik \ wjk;

which was to be demonstrated.

For the example presented in (20), the outer product

decomposition takes the following form:
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big

low

big

2
64

3
75 � big low b ig½ �

0
B@

1
CA

[
low

big

low

2
64

3
75 � low big low½ �

0
B@

1
CA

[
low

med

med

2
64

3
75 � low med med½ �

0
B@

1
CA

¼
big low big

low low low

big low big

2
64

3
75 [

low low low

low big low

low low low

2
64

3
75

[
low low low

low med med

low med med

2
64

3
75 ¼

big low big

low big med

big med big

2
64

3
75 ¼ ELOS:

ð33Þ

Appendix 2: The similarity S array
for the example with colors

The original data from [54] were rounded and rescaled

such that the minimal value equals one, whereas the

maximal amounts to eleven. Colors in the second column

were generated by Spectra software, which converts the

wavelengths to the RGB color system [118].

Appendix 3: The similarity array
S for the example with nations

The original data from [57, p. 31] were rounded and

rescaled such that the minimal value equals one, while the

maximal scale value amounts to seven.

No Nation 1. 2. 3 4. 5. 6. 7. 8. 9. 10. 11. 12.

1. Brazil 7 4 4 2 4 4 3 3 1 2 4 2

2. Congo 4 7 4 4 3 4 2 2 3 2 1 3

3. Cuba 4 4 7 4 3 3 3 2 5 4 2 4

4. Egypt 2 4 4 7 4 5 4 3 3 3 2 3

5. France 4 3 3 4 7 2 3 3 3 4 5 4

6. India 4 4 3 5 2 7 3 4 3 4 3 3

7. Israel 3 2 3 4 3 3 7 4 2 3 5 3

8. Japan 3 2 2 3 3 4 4 7 3 4 5 3

9. China 1 3 5 3 3 3 2 3 7 5 2 4

10. USSR 2 2 4 3 4 4 3 4 5 7 4 6

11. USA 4 1 2 2 5 3 5 5 2 4 7 3

12. Yugoslavia 2 3 4 3 4 3 3 3 4 6 3 7

Neural Computing and Applications

123



References

1. Anderson JR (1996) ACT: a simple theory of complex cogni-

tion. Am Psychol 51(4):355–365

2. Ritter FE, Tehranchi F, Oury JD (2019) ACT-R: a cognitive

architecture for modeling cognition. WIREs Cogn Sci

10(3):e1488

3. Milnes BG, Pelton G, Doorenbos R, Laird MH, Rosenbloom P,

Newell A (1992) A specification of the soar cognitive archi-

tecture in Z. Carnegie Mellon University, USA, Technical

Report

4. Laird JE (2012) The soar cognitive architecture. MIT Press,

London

5. Kieras DE, Meyer DE (1997) An overview of the EPIC archi-

tecture for cognition and performance with application to

human–computer interaction. Hum Comput Interact

12(4):391–438

6. Meyer DE, Glass JM, Mueller ST, Seymour TL, Kieras DE

(2001) Executive-process interactive control: a unified compu-

tational theory for answering 20 questions (and more) about

cognitive ageing. Eur J Cogn Psychol 13(1–2):123–164

7. Langley P, Laird JE, Rogers S (2009) Cognitive architectures:

research issues and challenges. Cogn Syst Res 10(2):141–160
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TADN (2017) Voxel-MARS: a method for early detection of

Alzheimer’s disease by classification of structural brain MRI.

Ann Oper Res 258(1):31–57

102. Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov

models for time series: an introduction using R, 2nd edn.

Chapman and Hall/CRC, Boca Raton

103. Grobelny J, Michalski R (2017) Applying hidden Markov

models to visual activity analysis for simple digital control panel
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