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Abstract

In this work, we propose a new method for modeling human reasoning about objects’ similarities. We assume that
similarity depends on perceived intensities of objects’ attributes expressed by natural language expressions such as low,
medium, and high. We show how to find the underlying structure of the matrix with intensities of objects’ similarities in the
factor-analysis-like manner. The demonstrated approach is based on fuzzy logic and set theory principles, and it uses only
maximum and minimum operators. Similarly to classic eigenvector decomposition, we aim at representing the initial
linguistic ordinal-scale (LOS) matrix as a max—min product of other LOS matrix and its transpose. We call this recon-
structing matrix a neuromatrix because we assume that such a process takes place at the neural level in our brain. We show
and discuss on simple, illustrative examples, how the presented way of modeling grasps natural way of reasoning about
similarities. The unique characteristics of our approach are treating smaller attribute intensities as less important in making
decisions about similarities. This feature is consistent with how the human brain is functioning at a biological level. A
neuron fires and passes information further only if input signals are strong enough. The proposal of the heuristic algorithm
for finding the decomposition in practice is also introduced and applied to exemplary data from classic psychological
studies on perceived similarities between colors and between nations. Finally, we perform a series of simulation experi-
ments showing the effectiveness of the proposed heuristic.

Keywords Similarity perception - Fuzzy logic - Similarity matrix decomposition - Neuromatrices - Linguistic ordinal scales
(LOS) - Reconstructing similarity matrix

1 Introduction

In our paper, we present a new approach to modeling and
analyzing human perception of similarities that derives
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in this regard. In this research, we focus only on modeling
of a specific aspect of the human thinking, that is, pro-
cessing the object’s similarities. As a result, our proposal
could be treated only as a small subproblem to the general
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We assume that similarity depends on perceived inten-
sities of objects’ attributes expressed by natural language
expressions such as low, medium, and high, that may be
provided, for example, by an expert. Ordinal scales are
very widely used in psychology, sociology, business or
marketing, especially in diverse questionnaire-based stud-
ies. In general, one is able to arrange scale items in an
order, e.g., from the smallest to the biggest, from the most
to the least preferred, important, usable, etc. However, the
distances (intervals) between two consecutive items may
not be equal throughout the whole scale and are usually
unknown. Probably, the most popular scale of this type is
the Likert scale [12] and its countless variations (e.g., 1.
Strongly disagree, 2. Disagree, 3. Neither agree nor dis-
agree, 4. Agree, and 5. Strongly agree). Exact definitions,
properties, and applications of different types of scales can
be found, for example, in the seminal paper of Stevens
[13]. The ordinal scale may be presented in various ways,
such as numbers, text, or graphical objects. In this paper,
we use scales of ordinal nature with items presented as
language expressions and call them linguistic ordinal scales
(LOS). They are also sometimes referred to as qualitative
ordinal scales (e.g., [14]).

Our main goal is to approximate a matrix containing
intensities of objects’ similarities evaluated by pairwise
comparisons on LOS. For this purpose, we search for such
a set of vectors, expressed also on LOS, that, multiplied by
their transposes using max and min operators, reconstructs
the original matrix as close as possible. The sought set of
vectors forms a matrix, which we name the neuromatrix.

Some recent studies involving brain imaging (e.g., [15])
show that tasks differing in cognitive load are related to the
existence of brain states that cannot be directly associated
with presented stimuli. Thus, modeling and searching for
hidden structures of similarities may correspond to the
physiology of human brain functioning.

In problem solving approaches, it is more and more
common to connect such separate fields as neuroscience
and computer science. In this regard, analogies to a phys-
iological human brain functioning are gaining increasing
attention. For instance, lately two special issues have been
devoted to this subject: Brain-inspired computing and
machine learning [16] and Cognitive computing for intel-
ligent application and service [17]. The researchers, in
general, try to mimic the human mental cognition as close
as possible. The simple neuron-based models are becoming
to a greater extent complex and similar to the real bio-
logical mechanisms taking place in human brains (cf. [18]).

Our approach fits well into this trend. We presume that
the neuromatrix searched for in our proposal reflects the
brain activity occurring at the neural level and represents
the objects—factors relations. The matrix of similarities’
intensities, in turn, is a kind of a resulting demonstration of
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those hidden brain processes that can be observed and
registered at the behavioral level. Our proposed method
may be treated as an attempt to relate neural characteristics
of thinking about similarities with their behavioral repre-
sentations measured on LOS.

1.1 Background and related work

There is a number of various methods developed and
extended over the last decades in different fields of science
that deal with the data dimensionality reduction problem
and finding the data underlying or latent structure. Proba-
bly, the most known and popular is the principal compo-
nent analysis (PCA) that derives directly from the classic
linear algebra and involves the eigenvalue and eigenvector
decomposition. This approach and its countless modifica-
tions have been used by scientists for a variety of purposes
in different applications. Currently, it is still common to
come across various versions of this method in scientific
papers. For example, Zhu et al. [19] combined PCA with
linear hashing and manifold learning for similarity search
in color images, while Das et al. [20] used PCA to remove
irrelevant features in their hybrid neuro-fuzzy reduction
model for classification purposes. Other contemporary
advancements in regarding PCA may be found, for exam-
ple, in [21-23]. One of the latest and most comprehensive
overviews of the data dimensionality reduction techniques
has been provided by Ayesha et al. [24].

Another widely utilized technique used for uncovering
hidden structure of surveys’ data is factor analysis (FA).
Though there is a considerable number of theoretical
constraints and practical problems with this approach (e.g.,
related to applying this method to variables measured on
interval scale), it is very popular. The concept of FA is
similar to PCA, but due to controlling the within-subjects
errors, it is far more computationally challenging. Scien-
tists have also developed more complex and versatile
methods that incorporate ideas and computations from FA.
These studies led to a common framework called structural
equation modeling, which has become, de facto, a standard
in studies involving humans answers to various types of
surveys. Recommendations on how to apply them in
practice are available, for example, in [25], whereas some
recent methodological developments in this area can be
found, for example, in [26-28].

Most of the available methods assume that the processed
data are measured in ratio or interval scales. However, in
many cases, especially in the fields of psychology, mar-
keting, education or sociology, the investigators have only
ordinal data at their disposal. Unfortunately, it is still quite
common for psychologists and researchers from other
fields to use FA- or PCA-based methods for the data
gathered only on the ordinal scales, which is, strictly
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speaking, not fully appropriate. Stevens [13] pays attention
to it yet in the 1950s, pointing out that an ordinal scale
allows only for determination of greater or less. Thus, the
researcher obtains only the rank order of data. In such a
case, there is no guarantee that successive intervals on the
scale are equal in size.

Though these approaches are useful in many situations,
they do not address all the problems associated with their
theoretical assumptions (e.g., regarding the nature of the
underlying probability distribution). Therefore, researchers
have been trying to elaborate new methodologies. The
great abundance of misusing the PCA- and FA-based
methods is not justified in light of the methodological
progress on other than ratio or interval scales. For instance,
various equivalents of FA for the ordinal-scale variables
were developed, by Joreskog and Moustaki [29]. These
methods, however, still require some assumptions, and they
end up with factor loadings which are interpreted as cor-
relations. Despite that, their ideas were further extended,
for example, in [30, 31], and recently in [32].

Lately, Revuelta et al. [33] have shown how to apply
exploratory and confirmatory analysis to nominal data in
Mplus software. Their approach is similar to multinomial
logistic regression with unobserved predictors. A version
of FA which operates only on binary data (BFA) is
described by Belohlavek and Vychodil [34]. Similar pro-
posals were put forward by Boeck and Rosenberg [35] and
Widerjans et al. [36]. They developed HICLAS and SIM-
CLAS models, respectively. The general idea of these
methods consists in reconstructing objects—attributes bin-
ary matrix I by two binary matrices of relationships:
objects—factors and factors—attributes. Boeck and Rosen-
berg [35] developed algorithms for performing the recon-
struction based on set-theoretical terms, such as
association, equivalence, and hierarchical implication.
They restrict sets of possible vectors, called as bundles, to
those that meet the assumed relationships.

The ordinal HICLAS proposal by Leenen et al. [37] is
an extension of the HICLAS model, where the initial
binary matrix (objects—attributes) is recreated by bundles
containing ordinal-scale variables. They employ specially
defined association relationships connecting an AND OR
logic to obtain hidden factors and hierarchical relationships
between objects and factors.

A similar approach was presented by Ganter and Glo-
deau [38]. The authors showed the way of searching
ordinal factors for an initial binary matrix. This, in turn, is
an extension of BFA and aims at a factorization by regular
binary factors that are determined individually for each
ordinal-scale category. The model corresponds fully to the
disjunctive version of ordinal HICLAS proposal [37],
though the same result is obtained by a slightly different,
more mathematically justified method. Moreover, the

authors analyze properties of their approach in the context
of a formal concept analysis. In this respect, they are
moving in the direction developed by Belohlavek et al.
[39, 40] where BFA is combined with a formal concept
analysis. The formal concept is defined as a subset of the
attributes’ relationships containing these objects that have
the same attributes, and the attributes are common for
objects from this set. Belohlavek provided many properties
of this approach. In particular, he demonstrated that having
the binary objects—attributes relationship, one can always
find the solution in the form of sets of factors that fully
reconstruct the initial matrix. In specific cases, it is also
possible to find the solution including fewer vectors than
the number of vectors in the initial matrix [34]. Formal
concepts allow to restrict the solutions’ search space and
are generated by contextual knowledge about relationships
between objects and attributes. In [41, 42], the binary
approach is generalized to fuzzy data and relationships,
such that properties and theorems from formal concepts
used in BFA apply also if attributes and relations are
assessed by the truth value from multimodal logic, i.e., by
values from the interval [0, 1]. Recent advances regarding
formal concept analysis involving dimensionality reduction
may also be found, for example, in [43, 44].

Another original approach to factorization of matrices
was put forward by Lin et al. [45], where the matrix with
ordinal-scale measures of the objects—attributes relation is
explained by vectors representing orthogonal factors.

Apart from the FA group of methods dealing with
ordinal-scale data, there are also methods that can be
specifically and directly applied for similarities between
objects and do not require ratio scale variables. The so-
called nonmetric MDS [46-50] approach is one among
them. Generally, the MDS class of methods enables one to
see the dissimilarities in dimensions which facilitate the
identification of possible underlying similarity structures.
The final analysis and interpretation of the results, how-
ever, might be troublesome if there are more than three
dimensions and if an other than Euclidean space is pre-
sumed. This trend of research is still active; some of the
latest research works include [51-53].

1.2 Contribution

In this research, we put forward to use the fuzzy logic and
set theory operators for reconstructing objects’ similarities
matrix by the searched for (hidden) objects—attributes
relation (the neuromatrix). As an input, we take a square,
symmetric fuzzy matrix of similarities between objects
denoted S (objects—objects, n x n). Based on the structure
of these values, we try identify factors that could have
possibly shaped the similarity ratings. In technical terms,
we want to find the so-called reconstructing vectors
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V (objects—factors, n x k) that represent the factors
underlying the observed similarities. The idea is similar to
classic FA. The number of factors (reconstructing vectors)
k is either lower or equal to the number of assessed objects.
Usually, we would be interested in finding as few factors as
possible to reconstruct the initial similarities as well as
possible.

The extensive explanations and discussion about the
relations, similarities, and differences between the existing
methods and our approach is presented in Sect. 2.5. The
main contribution of this research can be described under
the following three perspectives.

e From a theoretical point of view, we put forward a new
methodology that, to the best of our knowledge, has not
been earlier developed and utilized. The proposed
concept models human cognitive functioning in relation
to objects’ similarities assessments. The presented
approach allows to find hidden objects—attributes’
relations based on linguistic expressions and reduce
the dimensionality of similarities’ matrix. Our approach
is theoretically well grounded and soundly logically
justified (cf. Sects. 2.1-2.3).

e The technical aspect includes the development of the
heuristic algorithm that allows for taking advantage of
the theoretical proposal in practical applications. The
effectiveness of the put-forward procedure has been
proved in performed simulation experiments. The
unique characteristics of the method are treating smaller
attribute intensities as less important in making deci-
sions about similarities. This feature is consistent with
the way the human brain is functioning at a biological
level. A neuron fires and passes information further
only if input signals are strong enough.

e From the operational and practical application perspec-
tive, our proposal extends the arsenal of methods for
data dimensionality reduction and finding patterns of an
experimental data structure. Additionally, it may be
applied for linguistic-based or ordinal data, which is not
the case in most other approaches. As it was shown on
well-known practical examples, our methodology pro-
vides results that can be logically and reasonably
interpreted and may allow for better understanding of
the examined results. Our approach has a potentially
very wide usage in all research concerned with directly
assessing objects’ similarities.

The rest of this paper is organized in the following way.
First, we show and discuss on simple, illustrative examples
how the presented model grasps a natural way of reasoning
about similarities. In the next section, we discuss relations
and differences between our approach and other methods.
Then, we provide a description of a heuristic algorithm for
finding the underlying structure of the square matrix with
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intensities of objects’ similarities in the factor-analysis-like
manner. Next, we apply our proposal to real experimental
data on perceived color similarities provided by Ekman
[54] and reanalyzed by Shepard [55, 56] and to an example
about subjective nations’ similarities described by Kruskal
and Wish [57, p. 31]. Section 5 presents experimental
simulation results of our algorithm for randomly generated
matrices and confront them with a brute force approach.
Finally, we sum up the described approach, indicate its
possible applications, and broadly discuss possible future
studies.

2 Modeling human thinking
about similarities

2.1 Fuzzy-set perspective

The idea of the proposed similarity assessment model for
a simple case of a single attribute and two objects can be
described in the following way: “the X and Y objects are
similar if the intensity rating of this attribute for both
objects is high.” In the perspective of fuzzy sets and
multimodal logic, the intensity level of the attribute A may
be specified as the membership function value of the object
in the set of “objects having the attribute A at a high
intensity level.” Then, us(X) and p,(Y) denote member-
ship function values of X and Y objects, respectively,
belonging to the set of objects having the A attribute at
a high level of intensity. The relation of similarity can be
a fuzzy relation, which is, generally, defined as
R(X,Y) =T(uX), u(Y)), where T is any T-norm or
implication. In the presented approach, the fuzzy relation
can be expressed as:

SIMILARITY (X, Y) = p,(X) AND g1, (Y), (1)
where X, Y € {O}, and O is the set of objects being
compared. In terms of fuzzy logic, the described inference
model can also be formulated as a logical expression:
SIMILARITY (X, Y) is HIGH IFF
(Truth of (A(X) is HIGH) (2)
AND Truth of (A(Y) isHIGH)),

where A(X) is an intensity of attribute A for object X.
In both cases, we can define and calculate the similarity
degree for any two objects. For (1):

SIMILARITY (X, Y) = min{u,(X), 14 (Y)}, (3)

whereas for (2):
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SIMILARITY (X, Y) is HIGH
= min{Truth of (A(X) is HIGH), Truth of (A(Y) is HIGH)}.

(4)

In our approach, we assume that SIMILARITY (X, Y) is
determined by a human based on the perceived intensity of
attribute A, modeled by membership function values or by
the truth of (2). The natural way to define and process
attributes’ intensities is to use natural language expressions
such as low, medium, high, etc. It is reasonable to assume a
restricted number of intensity degrees given the psy-
chophysiological resolution, sensitivity of the senses, and
the cognitive abilities of the human brain. The intensity
granularity may also depend on the context.

The illustrative examples described in the next sections
show possible extensions of this way of thinking for a
greater number of attributes and objects. In the first
example, we took the binary data perspective which is
typical to Boolean factor analysis (BFA) [34], whereas in
the second one, we extend our considerations to LOS
values. In the latter example and the algorithm, we adopted
a linguistic model for determining and processing the
membership function of the degree of truth for intensity
levels of attributes. As membership function values and
degrees of truth are usually defined in the range of 0-1,
linguistic expressions (low, medium, and high) can be
replaced with numerical values from such a range (e.g., 0,
0.5, and 1, respectively). Due to the use of only max—min
operators in our approach, such manipulations are not
necessary. For clarity, we assign subsequent natural num-
bers to consecutive levels of attribute intensity.

2.2 Binary similarity data example

Let us say that an expert specifies the similarities between
all pairs of six sticks {a, b, c, d, e, f}. Each stick is char-
acterized by two attributes: its length and diameter. The
expert is able to assign each stick to two disjunctive length
classes: either long or short, and two disjunctive diameter
classes: wide and narrow. Table 1 presents an exemplary

Table 1 Sample binary data of objects—attributes relation

Sticks Length attribute Width attribute
Long (/) Short (s) Wide (w) Narrow (n)

a 1 0 0 1
b 1 0 1 0
¢ 0 1 1 0
d 0 1 0 1
e 1 0 1 0
f 0 1 1 0

result of such a procedure. Let us consider two extreme
approaches for assessing sticks similarities given this
objects—attributes relation: liberal and conservative.

2.2.1 Liberal pattern of similarity derivation

In the first, liberal logical pattern of similarity generation
(L_LPSG), the expert may regard as similar two sticks that
are assigned to the same class of one attribute or to the same
categories for both attributes, i.e., “both are long” OR “both
are short” OR “both are wide” OR “both are narrow.”

Let us find objects’ relations separately for each attribute
by computing the Cartesian product of appropriate vectors
taken from Table 1 using logical AND. By applying logical
OR to these matrices, we obtain the objects’ similarities
matrix denoted as Sy gin) (“L” for “liberal” and “Bin” for
“binary”), i.e., s;; is one when in any of these matrices the
(i, ))th element is one. The zero value will appear in s;; only
if in all matrices the (i, j)th element is equal zero. As
a result, we obtain (5):

a b ¢c d e f
all 10110
b1 1 1 0 1 1
clo 1 1 111

Suem =411 0 1 1 0 1 ()
e|ll 1 1.0 1 1
flo1 11 11

As it was demonstrated by Belohlavek and Vychodil [34],
vectors from Table 1 may be treated as a matrix of speci-
fying factors. Thus, the similarity relation matrix can be
obtained by (6):

[l s w n
afl 0 01 a b c d e f
b1 01 O I T1T 1.0 0 1 O
c|0 1 1 0 s |0 0 1 1 0 1
o = Si@in)-
d|{0o 1 0 1 w0 1 1 0 1 1
e|l1 0 1 0 nll 00 1 00
f L0 1 1 0]
(6)

2.2.2 Conservative pattern of similarity derivation

In the second, conservative logical pattern of similarity
generation (C_LPSG), two sticks are similar only when
they have both attributes assigned to the same categories,
i.e., (“both are long” AND “both are wide”) OR (“both are
long” AND “both are narrow”) OR (“both are short”
AND “both are wide”) OR (“both are short” AND “both
are narrow”).

@ Springer
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In this pattern of eliciting similarities, the matrix of the
objects—attributes relation consists of column vectors rep-
resenting joint attributes and may take the following form

7):

IANDw [ANDn sANDw sANDn
a 0 1 0 0
b 1 0 0 0
c 0 0 1 0
d 0 0 0 1 ()
e 1 0 0 0
f o 0 1 0

By applying the same procedure as for the first way of
thinking, we obtain the subsequent similarity matrix
denoted as Scmin) (8), where “C” refers to conservative
and “Bin” to “binary”:

a b c d e f
all 00 0 00
b0 1 00 1 0
cl0 01 001
d10 001 0 0| = Scon (8)
el0 100 1 0
fl10 01 0 0 1

It can clearly be observed that matrices Si (gin) and Scgin)
differ significantly since they reflect various ways of
thinking about similarities.

2.3 Our approach: LOS similarity data example

In our method, we want to factorize matrix S with objects’
similarities by finding the matrix V such as Vo V' = §. In
contrast to the previous example, here, both matrices S and
V include LOS values. It seems that this approach is more
realistic than the one employing only binary relations. We
modified the binary example presented above, i.e., the
objects—attributes relations are given on an ordinal scale by
means of natural language expressions, that is, low, med-
ium (med), and high represented by numbers 1, 2, and 3,

Table 2 Sample LOS intensities of objects—attributes relation

Sticks  Length attribute Width attribute
Long (/) Short (s) Wide (w) Narrow (n)
a High (3) Low (1) Medium (2) Low (1)
b Medium (2) Low (1) Low (1) High (3)
c Low (1) High (3) Medium (2) Low (1)
d Low (1) Medium (2) Medium (2) High (3)
e Medium (2) Low (1) High (3) Low (1)
f Low (1) High (3) Medium (2)  Medium (2)

@ Springer

respectively. Table 2 contains possible data under these
assumptions.

2.3.1 Liberal pattern of similarity derivation

By applying the schemes of thinking from the binary vari-
ables case and using similar logical expressions, one may try
to construct similarities matrices for LOS values. Obviously,
it is not possible to use the same logical operators as they are
only defined for binary variables. The natural extension of the
matrix Boolean product is a max—min operation, where OR
corresponds to max and AND to min. Within the sets theory,
the summation is replaced by the max operator, whereas the
multiplication by the min one. It can be noticed that the
Boolean matrix product is just specific case of the max—min
operation. This type of a construct is used as a method of
relations composition, especially in the area of fuzzy sets and
fuzzy logic (e.g., [58-60]).

In “Appendix 1,” we show that the max—min operation
can be used for constructing LOS similarities analogously
as in the Boolean data example. The similarities matrix is
created by means of a union of objects’ similarities rela-
tions with respect to individual attributes (simple or com-
plex). Such a procedure is equivalent to performing max—
min product of V and V'. The neuromatrix V may contain
single vectors of objects—attributes relations or vectors
being a logical combination of two or more attributes like
in the second scheme of eliciting objects’ similarities.

Irrespective of the procedure of determining objects’
similarities, we assume that each object is fully similar to
itself; therefore, diagonal items have the highest similarity
scale value. Additionally, we assume that object i is similar
to j with the same extent as object j to i; thus, the simi-
larities matrix is symmetric.

Applying the L_LPSG pattern of eliciting similarities
and performing the same max—min operation as in the
binary example (V o V') on vectors from Table 2, we get

9):

[l s w n
al3 1 2 1 a b c d e f
b2 1 1 3 [ {3 2 11 2 1
c13210s113213
dl1 2 2 3 wil2 1 2 2 3 2
e |2 1 3 1 n|l 3 1 3 1 2
fl1 3 2 2

a b c d e f

al3 2 2 1 2 2
b2 3 1 3 2 1
cl|2 1 3 2 2 3
“a|1 3 23 1 2| ~Sos ®)
e |2 2 2 1 3 2
fl12 1 3 2 2 3
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2.3.2 Conservative pattern of similarity derivation

The second way of eliciting similarities presented in this
paper starts with determining combined vectors for
objects—attributes relations. For this purpose, instead of
binary AND we use the min operator (denoted by N). Thus,
a vector representing sticks that are long and wide contains
minimal values from columns long and wide from Table 2.
Applying this procedure for all combinations of attributes,
we obtain (10):

INw INn snNw sNn
a (2 1 1 1
b |2 2 1 1
c 1 1 2 1
d 1 1 2 2 (10)
e |2 1 1 1
1t 1 2 2

Using the second scheme of thinking (C_LPSG) leads to
the following similarities matrix (11):

a b c d e f
al2 22 2 2 2
bl2 2 1 1 2 1
cl2 1 221 2
dl2 1221 2| = Scuos: (1)
el2 211 2 1
fl2 1221 2

2.4 Our approach characteristics

In the binary example, we presented two natural ways of
obtaining similarities between objects. It can be observed
that in this LOS example, other logical patterns of deter-
mining objects’ similarities may be specified. It stems from
the fact that attributes are not necessarily disjunctive. For
instance, object fin Table 2 was rated by an expert as
partly wide and partly narrow at the same time. Thus, one
may deem natural to specify similarity based on a combi-
nation of three or more attributes instead of only two of
them.

The examples described above show how to obtain a
matrix of similarities in a natural and logical way both for
the binary and for the LOS variables. There are a number
of issues that require discussion and clarifications. First, the
patterns of determining similarities between objects based
on processing their attributes do not represent all possible
ways of doing that. Secondly, some may argue that they are
not always consistent with various psychological models of
assessing similarities. For example, it is easy to see that the
application of L _LPSG does not always preserve the
transitivity of relations in a similarity matrix, which is

often assumed or is desirable in psychological studies. It
may happen that according to an expert, object a is similar
to b with respect to the length attribute, b is similar to
¢ with respect to the width attribute; but that does not
necessarily mean that a should be similar to ¢ because it
may have different length and width.

In contrast to L_LPSG, the more conservative C_LPSG
approach guarantees similarity matrix transitivity for bin-
ary data. It results from the assumption about the attributes’
disjunction and the similarity construction that requires
identical attributes for similar objects. The application of
the min operation for combining logically attributes may
raise doubts and provoke discussions. Referring to the
sticks example, let us consider the situation where an
expert evaluated the intensities of attributes using LOS
(low, medium, high) as in Table 3. Determining the simi-
larities matrix according to the rule “sticks are similar if
they are long and wide,” we obtain (12):

a b c d e f
al3 1 1 2 1 2
b1 3 1 1 1 1
c|1 1 3 1 1 1
d|2 1 1 3 1 2 (12)
el 1 1 1 3 1
fl12 112 13

It can be observed that although objects b and ¢ have
identical measures of intensities for the long and wide
attributes (the first and second column of Table 3), their
similarity is specified at the lowest level. On the other
hand, objects a and f differ in their attributes’ intensities,
but are assessed as more similar than objects b and ¢, where
the attributes’ intensities are the same.

This seemingly paradoxical result may be interpreted in
favor of the min operation. It can be treated as a cautious
(pessimistic) similarity assessment in a situation when an
expert is not fully convinced that the given attribute
characterizes the specific object. For instance, sticks b and
c are rated as being long to the same, smallest extent, and
as medium wide. Though both features are measurable, an

Table 3 Sample LOS intensities of objects—attributes relation show-
ing that lower values are less important in our similarity assessment
model

Sticks Long (/) Wide (w) INw

a High (3) Medium (2) Medium (2)
b Low (1) Medium (2) Low (1)

c Low (1) Medium (2) Low (1)

d High (3) Medium (2) Medium (2)
e Low (1) Low (1) Low (1)

f Medium (2) Medium (2) Medium (2)
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expert could assign the small length value both to the short
sticks and to the very short ones. Likewise, the medium
width could represent slightly less than medium width
sticks or somewhat wider than medium width sticks. When
attributes are hardly to measure or even categorical, such
an approach could be even more convincing. If we were,
for example, to assess the sticks’ colors and specify the
attribute as blue, then small level of this feature could be
attributed both to navy blue and to teal blue. In such a case,
for a sensitive person, these two colors may not be similar.
Generally, in the max-min approach, higher levels of a
specific attribute intensities (or a combination of many
attributes) in both compared objects increase their degree
of similarity.

The way of constructing similarities matrices based on
the C_LPSG pattern is in concordance with the general
idea of the feature set model of similarity—the contrast
model proposed by Tversky [61]. In this approach, the
similarity determination is described as a feature matching
process. The model defines the similarity between objects
as a linear combination of the measures of their common
and distinctive features. In the conservative scheme of
constructing objects’ similarities based on attributes/factors
(C_LPSG) presented here, only common features are taken
into account.

Despite all restrictions, the possibility of explaining
objects’ similarities subjectively expressed on LOS by
factors represented on the same type of scale is attractive
cognitively and practically. Obviously, the presented above
examples are simple and assume full knowledge about
objects’ attributes. However, our real task being subject to
analysis in this paper is the process reverse to that pre-
sented in the above examples. We try to find unknown
neuromatrix V containing factors that reproduce the simi-
larities matrix S which is known and has been, for example,
acquired from an expert or a group of experts in real
contexts.

Based on the extensive theoretical considerations pre-
sented in this section, we employ the max—min product of
neuromatrix vectors V with their transposed values to
produce (reconstruct) the input matrix of similarities. The
general idea is presented in Fig. 1 and can also be
expressed as (13):

V (objects-factors, n x k) o VT (factors-objects, k x n)
= S(objects-objects, n x n).
(13)
Our idea is similar to the PCA concept where orthogonal
eigenvectors reconstruct a square symmetric matrix con-
taining either correlations or covariations. Researchers

usually take advantage of this approach to reduce the
correlation or covariations matrix and represent it by as few
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eigenvectors as possible, trying to reproduce the original
matrix as close as possible. In our approach, the input is
also square and symmetric, but all the similarity values are
measured solely on a LOS and they can be represented
neither by correlations nor by covariances. Furthermore,
we confine solely to max, min, AND, OR operators.
However, our main goal is similar to PCA and we want to
represent the complex similarity matrix by a simpler
structure consisting of reconstructing vectors that would
make the data interpretation easier.

Usually in real contexts, attributes’ assessments, such as
those given in Tables 1 and 2, are not available. What is
more, the experts’ ways of thinking (L_LPSG, C_LPSG or
others) are also not known. When in such circumstances,
one finds a decomposition that reconstructs the similarities
matrix well, the interpretation of the factors may be a kind
of art, which often takes place in the classic factor analysis
(FA) or various types of multidimensional scaling (MDS).
It seems to be justified to presume that better decomposi-
tions signify that the similarity determination mechanism
was closer to the max—min composition of relations model.
In such a case, one may try to interpret the obtained neu-
romatrix in terms of the attributes’ composition by appro-
priate LPSG. Likewise in FA, knowledge about the
analyzed context facilitates possible factors’ explanations
also in our approach. A straightforward mathematical
background used in our approach is demonstrated in detail
in “Appendix 1” using a very simple example.

2.5 Relation to other methods

The method presented in this paper is inspired by the
concepts of FA, MDS, HICLASS, Ordinal HICLASS,
Ordinal FA, and BFA, which were reviewed in the Intro-
duction section. In particular, the proposal is similar to the

Objects ()
&
T
| V' (% )
&L
o ’
Factors (k) Objects (n)
£ 3 s, n)
n, n
,é V(ﬂ, k) é square &
8 8 symmetric

Input: S (Objects-Objects similarities)
Output: Only Vsuchas §= voy'

© - MaxMin operator
Fig. 1 Schematic illustration of our approach to employ the max—min

product of neuromatrix vectors V with their transposed values to
produce (reconstruct) the input matrix of similarities (k < n)
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approach originated from fuzzy logic [39], since in both
cases the input data represent various intensity levels of
similarity relations. In Sect. 2 of our paper, we use ordinal
formal contexts for illustrative purposes, but we do not
directly refer to the formal concepts analysis. The use of
LOS values for describing similarity relationships differ-
entiates our approach form such models as ordinal
HICLASS [37] and ordinal FA [38]. In the latter proposal,
ordinal scales are employed only for defining searched
factors, whereas the matrix being factorized still contains
binary values.

Unlike other models, for example, [62—64], in our pro-
posal the formal contexts represented by objects—attributes
relationships are not known. In the theoretical setup that we
present, we neither generate nor hypothesize about formal
contexts. Since the objects—attributes matrix does not exist
in our methodology, any type of formal concept analysis is
not feasible.

In our approach, we search for unknown factors that
explain similarities between objects presented in a square
matrix containing pairwise comparisons results. These
factors may only, at most, be interpreted as aggregated
properties or combinations of objects’ attributes which are
not known, whereas in formal contexts, objects’ attributes
are explicitly specified and known before any analysis is
conducted.

What is unique in our method is the use of LOS data
along with applying only max and min operations in
reconstructing the initial matrix. Such a procedure is a
generalization of the BFA which is a kind of an extension
of the classic FA idea to categorical data. It can also be
compared to the association relation in the HICLASS
model for ordinal-scale variables, or to the similarity
relationship analysis in the fuzzy context and fuzzy concept
lattices developed by Belohlavek [39] and extended later
by Belohlavek et al. [40-42].

In contrast to the latter approaches, where one analyzes
the existing, well-specified fuzzy formal context, we try to
find the unknown LOS context, a neuromatrix, understood
as an objects—factors relation. Since we take advantage of
the simple max—min relations for reconstructing the simi-
larity matrix, there is no need for using multivalued logic
formulas, as it is the case in fuzzy concepts approaches.

In general, we search for one objects—factors matrix
V (objects—factors, n x k) that reconstructs a square and
symmetric matrix S (objects—objects, n x n) of similarities
between objects rated on an ordinal scale. Thus, we want
V  (objects—factors, nxk)oVr (factors-objects,
k x n) =S (objects—objects, n x n). In proposals of
Belohlavek and colleagues concerned with Boolean factor
analysis and factor analyses involving formal concepts, the
input data consist of relationships between objects and
attributes. The set of objects, attributes, and their

relationships are called a formal context and can be con-
veniently presented in a form of a matrix: I (objects—at-
tributes, n x m). Based on this input, two additional,
distinct matrices are searched for, i.e., A (objects—factors,
n x k), and B (factors—attributes, k x m). The relation
between these components is (14):

I(objects-attributes, n x m) = A(objects-factors, n x k)
o B(factors-attributes, k x m),
(14)

which is totally different than in our proposal.

We provide only one matrix V (objects—factors, n x k)
as an output. The only similarity is the correspondence
between our matrix V (objects—factors, n x k) and matrix
A (objects—factors, n x k) from formal concepts approa-
ches. Matrices I (objects—attributes, n x m) and B (factors-
attributes, k x m) from formal concepts decompositions do
not appear in our approach, whereas our matrix S (objects—
objects, n x n) is not present in papers regarding decom-
positions of fuzzy contexts both in their fuzzy and Boolean
versions and all of their modifications.

Finding factors that try to explain the ordinal-scale
similarity matrix is also a main purpose of MDS or non-
metric linear FA concepts [49]. In this trend, all the com-
putations are based on dissimilarities that are represented
as distances in a multidimensional space, whereas in our
technique we are operating directly on LOS similarity
intensities between objects.

3 Algorithm proposal for decomposing
the LOS similarity matrix

To apply the demonstrated idea to practically seek data
structure and reduce problems’ dimensionality, it is necessary
to develop a procedure of finding the reconstructing vectors. It
would be ideal if such a procedure provides a full decom-
position of any square and symmetric LOS data matrix, like it
is the case in PCA. However, despite many attempts, we were
not able to devise any deterministic algorithm for finding the
full decomposition of such an array. Therefore, we present
a heuristics that does not guarantee finding the vectors that
fully reconstruct the initial matrix.

The general idea of our procedure is summarized in
Algorithm 1, which takes as input LOS similarities inten-
sities between all pairs of objects and outputs a neuroma-
trix with reconstructing vectors and ordered reconstructing
vectors. Our procedure does not require defining any
parameters.

The key point in the presented process of finding the
solution is connected with the observation that within the
suggested fuzzy-set theory framework negative values do
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not appear. Therefore, if big values are included in the
reconstructing vector at the beginning of the procedure,
there will be no possibility to decrease the values from the
reconstructed matrix by remaining vectors. If one imagines
the initial similarity matrix values as cuboids laid down on
a plane, where each cuboid consists of the number of
unitary cubes corresponding to the degree of similarity
between a pair of objects, then the process of recon-
structing such a structure is just the superposition (max
operation) of quasi-rank-one matrices created by applying
the min operation on consecutive reconstructing vectors.

Algorithm 1: Finding reconstructing vectors for LOS similarity
matrix

Input: LOS similarity matrix (square, symmetric) to be reconstructed

S
Output: LOS neuromatrix with reconstructing vectors V
Procedure:

Step  Construct and initialize primary variables. Fill V with zeros
1 and insert columns’ maximal values from S into the
diagonal of V.

Step  Perform the decomposition. Search for reconstructing vectors
2 values V by sequentially processing items from the
similarity matrix S and compute auxiliary matrices. Repeat
it for all columns in S.

2(a) Compute auxiliary matrices: P denotes a matrix with
currently predicted values defined as Vi yren © VI rens R 8
a matrix with residuals equal S — P, and H is a hint matrix
defined as h; = 0 if r;; = 0, else h;; = s;;.

2(b) Select a column in H with the minimal value. If multiple
columns satisfy the criterion, take the one with the maximal
range. In the case, there is more than one column with the
same range, select the one with the maximal range after
excluding initial maximal values from those columns. If
necessary, repeat the procedure.

2(c) Fill in the selected column by finding the minimal #;
value greater than zero and placing it in the v; and v
locations. Next, compute the P and R for both locations.

If there are no negative values in R in only one those
locations choose this location.

If in both cases there are no negative values in R, pick the
location for which the sum of column values from S is the
biggest.

If in both cases in R there are negative values choose the
one with the smallest absolute sum of negative residuals.

Step  Fine-tune the decomposition. Improvements to the initial
3 solution by making small, local changes to values of V.

Vine: For each v;; repeatedly add one until the sum of absolute
values of all residuals is getting smaller or a negative
residual appears in R.

Vaec: For each v; repeatedly subtract one until the sum of
absolute values of all residuals is getting smaller or a
negative residual appears in R.

Step  Order the reconstructing vectors. Rearrangement of
4 determined V vectors in a descending order of their
importance in reconstructing input matrix S. At first, find
this reconstructing vector, for which the rank-one matrix
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vo vT) is the closest to the initial data, i.e., the sum of
absolute values of all residuals is the lowest. Then, find the
next reconstructing vectors in a decreasing order by
checking unions of previously determined rank-one
matrices with every candidate from the remaining set of
vectors, and selecting this combination which gives the best
approximation of S.

Given the problem with additive nature of the max—min
operations, the proposed heuristic tries to find such values
for reconstructing vectors that, from one hand side,
reconstruct as much as possible, but on the other hand they
do not produce bigger ratings in other places of the pre-
dicted matrix than their equivalents in the initial similarity
matrix.

In our method, we use integer values; however, one
should bear in mind that these values represent LOS vari-
ables just like in the “Appendix 1” example. In a computer
program that implements this algorithm, the matrix S con-
tains the initial LOS similarity values; the V neuromatrix
includes the searched reconstructing vectors. Additionally,
we use three other types of matrices. The predicted (re-
constructed) matrix which is computed by the max—min
multiplication of the current reconstructing vectors and
their transposes P = Vi urent © ngem. The matrix of
residuals is calculated as R =S — P. If R contains only
zeros, then the V o VT fully reconstructs S. The hint matrix
H that stores those items from S which are not fully
reproduced (the residual does not amount to zero) by the
current reconstructing vectors. So, if r; = 0, then h; = 0;
else, hy; = s;;.

Some other procedures could be applied for fine-tuning
the decomposition, e.g., instead of adding or subtracting
repeatedly ones, a combination of adding and subtracting
may be used. We also propose here only one of the possible
ways of ordering the reconstructing vectors which, how-
ever, does not guarantee finding the best vector arrange-
ment. One may devise different heuristics or, at the
expense of computing time, check all combinations of
column arrangements.

To give the user idea to what extent the individual
vectors reconstruct the input matrix, the relative impor-
tance and cumulative relative importance are used. They
are computed for a given vector as a percentage value of:
(sum of absolute differences from the matrix reconstructed
by the given vector minus the sum of absolute differences
resulting from reconstructing the initial matrix by all pre-
vious vectors) divided by (the maximal possible sum of
absolute differences). The consecutive relative importance
say by what percentage the initial matrix will be better
reconstructed if the given vector is included in the solution,
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while all preceding reconstructing vectors are also used.
The cumulative relative importance can be interpreted as
the percent of the input matrix reconstruction. The full
reconstruction occurs when the cumulative relative
importance is equal to 100%.

Likewise eigenvalues from the classic approach, the
relative importance is used for assessing the usefulness of a
given vector in reconstructing S, but their interpretation is
different and they should not be confused. Eigenvalues are
always associated with their eigenvectors. Here, the rela-
tive importance depends on the reconstruction degree of
S produced by preceding vectors from the ordered matrix.
The sum of consecutive relative importance shows to what
extent the initial matrix is reconstructed, but we cannot say
that the reconstructing vectors here are orthogonal. They
cannot be treated as eigenvectors, and they do not con-
tribute irrespective of other vectors. Changing the order of
column vectors in the neuromatrix V would not change the
overall reconstruction quality. Residuals will be the same.
It results from the fact that the quasi-rank-one matrices
produced by individual reconstructing vectors are joined by
the union operator which provides the same predicted
matrix irrespective of the rank-one matrices order.

In methods like FA, MDS, and our approach, where the
initial data matrix is to be represented by a restricted
number of dimensions/vectors, there is a problem with
determining the final model, i.e., the number of recon-
structing vectors in our case. The final model should
reproduce S as well as possible, but the number of recon-
structing vectors should be as small as possible to provide
clear and reasonable interpretations of the underlying data.
There have been already different solutions proposed in
various methods to tackle this problem. They range from
a very simple approach like the Kaiser’s heuristic [65]
which advices retaining vectors in FA with eigenvalues
greater than one, to more complex ones put forward by, for
example, Ceulemans and Kiers [66], Preacher et al. [67],
Wilderjans et al. [68]. The discussion of strategies that
could be applied in such situations was provided, for
example, in [36, 69-71].

In our approach, the values in reconstructing vectors
should be interpreted as the degree of similarity of a given
object with the object’s attribute (factor) represented by a
given reconstructing vector. We assume that the LOS range
is the same for all reconstructing vectors. In classic FA, the
factor loadings are just correlations between an object and
the hidden factor. Likewise in classic FA, one needs to
specify the threshold at which the similarity intensity is
high enough and the value for which it should be consid-
ered as not meaningful. In the literature regarding FA,
various recommendations may be found in this regard.
According to some researchers, 0.3 is treated as the mini-
mal value for a factor loading [72, 73], whereas others

classify 0.70 or above as high and 0.5 or lower as low [74].
One of the most popular approaches involves using an
absolute value of 0.4 as a cutoff and interpret values of 0.6
as high [72, 75]. Analogically to the recommendations used
in FA, we propose to use the similarity scale range median
as a threshold in our approach. For example, for nine items
LOS with increasing intensities, values bigger than the fifth
value will denote a significant degree of similarity between
a given object and the specific attribute represented by the
reconstructing vector.

As mentioned above, the final model should be as par-
simonious as possible and provide reasonable degree of the
initial matrix reconstruction. Thus, again some recom-
mendation regarding the acceptable value would be useful.
Peterson [76] compared real FA metadata with randomly
generated data, and based on the results advocates
searching solutions in which the variance explained by the
factors exceeds 50%. In our case, instead of variances we
use cumulative relative importance that is significantly
different but also provides information on how good the
approximation is. Given the exemplary data provided in
Sect. 4 and experiences from simulation studies presented
in Sect. 5, we would rather recommend pursuing solutions
with cumulative relative importance higher than 80%. It is
also worth noting that our method works for symmetric and
asymmetric data. The predicted matrix is always symmet-
ric, and the algorithm tries to find such a symmetric
approximation of asymmetric data that the absolute sum of
residuals is the lowest.

4 Practical examples

Here, we present two different examples showing how the
suggested method may be applied and used for drawing
conclusions regarding similarities between objects and
reconstructing vectors. These examples are well known in
the literature regarding MDS, and the original raw data are
easily available. Both of them deal with similarities
expressed by humans during pairwise comparisons on
ordinal scales.

4.1 Perceived colors’ similarities

Ekman, in his work [54], asked participants to assess the
degree of similarity between 14 colors. Stimuli were dis-
played in pairs and subjects rated the qualitative similarity
on a five-step scale. He rescaled the results to the [0, 1]
interval range and applied FA treating these data as cor-
relations. Ekman presented a five-dimensional solution that
decently reconstructed the initial quasi-correlation matrix.
The obtained eigenvectors were identified as: violet, blue,
green, yellow, and red.
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Shepard [55, 56] reanalyzed Ekman’s data using his
nonmetric MDS approach which resulted in two dimen-
sions. He also proved that in this case the relationship
between similarities and distances are not linear.

Ekman’s and Shepard’s original analyses were per-
formed on rational data. Our methodology, by definition,
cannot be applied for other than ordinal data. Thus, to make
the comparisons more logical we transformed the rational
data into ordinal ones by multiplying them by 10 and
rounding to whole values. The transformed data are given
in “Appendix 2”. Then, we reproduced Shepard’s result for
ordinal data using classic nonmetric MDS with a standard
stress value as a goal function, in a MATLAB 7.11.0
(R2010b) version. The outcome, illustrated in Fig. 2, was
next compared with the solution provided by our method-
ology (Table 4).

The application of two versions of our algorithm to these
data resulted in finding two different decompositions where
one of them was able to fully reconstruct the initial data.
The ordering of the obtained vectors (cf. Table 4) shows
that the similarity matrix can be reconstructed in 83% by
only three vectors, which can be interpreted as red, blue,
and green.

The obtained results seem to be qualitatively different
from both Ekman’s FA which suggested five dimensions
and the Shepard’s [55, 56] two-dimensional solution. The
Ekman’s approach was correctly criticized by Shepard for
using rescaled similarity ratings as correlations (scalar
products). In our approach, we do not use correlations, but
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Fig. 2 Illustration of Shepard’s solution [55, 56] to Ekman’s colors
similarities experiment [54]. Colors were generated by Spectra
software, which converts the wave lengths to the RGB color system
[118] (color figure online)
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proximity measures and, like Shepard, we do not assume
a linear relationship between similarities and distances.
Additionally, unlike Shepard, we do not “get something
from nothing” which is the case in the Ekman’s and
Shepard’s approaches. Ekman obtains precise points in
multidimensional Euclidean space from similarities rated
on a five-step scale, whereas Shepard provides metric
representation based solely on a nonmetric rank order of
those proximity measures.

Both previous approaches applied to this experiment
assume that people think in terms of dimensions while
performing similarity judgments and/or they are aware that
such dimensions exist. This, however, might not be true, all
the more that in this specific example the colors were
presented only in pairs and subjects could not see the
broader picture of the whole experiment. There is another
problem with the Shepard’s solution: How to interpret the
identified dimensions? Although the graphical representa-
tion (Fig. 2) resembles to some degree the Newton’s color
circle, Shepard did not provide substantive and convincing
explanation of these two dimensions. The idea of a color
circle is to provide a color hue categorization and sum-
marize the additive (subtractive) mixing properties of the
so-called primary colors: red, green, and blue (cyan,
magenta, yellow), but there were significant problems with
identifying color physical properties in two-dimensional
Euclidean space. From the perceptual point of view,
attempts of representing color hues in a two-dimensional
Euclidean space resulted in creating the CIE Lab color
system [77] where the equal Euclidean distances between
color hues correspond approximately to similar differences
in their human subjective perceptions. The Shepard’s
solution seems to be more similar to this approach than to
classic color circles. The CIE Lab space is obtained by
linear transformations of human photoreceptors sensitivity
to red, green, and blue light components. Since the cones
sensitivity functions are not straightforward, the system is
far from being perfect. In light of the above, it is quite
possible that the process of judging color similarities
depends more on physical properties of three different
types of retina’s cones (red, green, and blue) than the
artificially created two-dimensional CIE Lab space for the
color hue. The process of estimating the colors’ similarities
could have been simpler and not based on a dimensional
idea. We may try to assign (compare, categorize) a given
hue to one of the well-known primary colors. In this sense,
our approach and the solution proposed by Ekman would
be more appropriate than the Shepard’s analysis.

Shepard argues also that his two-dimensional solution
accounts for as much as 84% of the overall variance which
is much better than the reconstruction obtained by the first
two (unrotated) Ekman’s dimensions (about 64%). How-
ever, according to Kruskal’s recommendations [47], only
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Table 4 Ordered reconstructing vectors with relative importance for the example with colors [54] (color table online)

Wave | Red Blue Green
No. Color length
[nm] Vig \Z Vg V2 Vio V12 Ve Vs Vii Vo Vi3 Vi V3 \4
1. - 434 | 1 5 1 0 1 1 2 3 1 1 1 11 5 2
2. m 445 | 1 5 2 1 1 1 2 3 1 1 1 1 6 2
3. u 465 | 1 9 2 1 1 1 3 6 1 1 1 1 11 2
4. u 472 1| 11 2 1 1 1 4 6 1 1 1 1 1 2
5. 490 | 1 3 4 1 1 1 7 11 1 2 1 1 1 4
6. 504 | 1 2 6 1 2 1 11 2 1 2 1 1 1 7
7. 537 | 1 2 8 1 2 1 2 2 2 3 1 1 1 11
8. 555 | 1 1 11 1 3 1 1 1 1 4 1 1 1 1
9, 584 | 3 1 1 1 7 4 1 1 5 11 3 1 1 1
10. 600 | 4 1 1 1 11 6 1 1 8 1 5 2 1 1
11. 610 | 7 1 1 2 1 9 1 1 11 1 7 2 1 1
12. m 628 | 8 1 1 2 1 11 1 1 1 1 10 2 1 1
13. m 651 | 9 1 1 2 1 3 1 1 1 1 11 2 2 1
14 m 674 | 11| 1 1 2 1 3 1 1 1 1 4 3 1 1
First rank-one relativel (5 59 55 |53 51 59 55 57 51 50 61 51 51 55
importance [%]
ﬁﬁ?ﬁﬁnces %] 63 13 7 4 3 2 2 1 1 1 1 1 06 04
Cumulative relative 63 76 83 [87 90 92 94 95 96 97 98 99 996 100
importances [%]

the stress value around 0.05 corresponds to a good-quality
solution (10% fair, 20% poor). Naturally, adding another
dimension improves the solution’s quality, but then the
problem with interpreting dimensions is becoming even
bigger since neither the color saturation, nor lightness
(brightness) was controlled in this experiment. Our solution
based on three attributes exhibits comparable degree of
initial values reconstruction as Shepard’s two-dimensional
or Ekman’s five-dimensional solutions and allows for
analyzing the experimental data from a different point of
view.

4.2 Perceived nations’ similarities

The original data from the Kruskal and Wish example
[57], p. 31 were collected from a group of 18 students who
rated each pair of 12 countries (Brazil, Congo, Cuba,
Egypt, France, India, Israel, Japan, China, former times
USSR, USA, and former times Yugoslavia) on a scale from
1 “very different” to 9 “very similar.” The authors pro-
posed the following interpretation of the three obtained

dimensions: I—Political alignment (noncommunist—com-
munist), [[—Economical development (developing—devel-
oped), and III—Geography and culture (East—West).
A nonmetric MDS with a standard stress value as a goal
function performed for this three-dimensional solution in
a MATLAB 7.11.0 (R2010b) version provided data illus-
trated in Fig. 3.

For the purposes of our approach, the original similarity
data were rounded and rescaled such that the minimal value
equals one, whereas the maximal scale value amounts to
seven. They are given in “Appendix 3.” Ordered recon-
structing vectors provided by our heuristic algorithm are
presented in Table 5.

The results of our analysis provide an alternative solu-
tion to the one obtained by nonmetric MDS. The first four
reconstructing vectors from Table 5 are able to reconstruct
the initial nations’ similarities in 89.2%, and they may be
interpreted as follows: communist or former communist
countries (v3): Cuba, China, Yugoslavia, USSR; countries
having nuclear weapons (vi9): USSR, France, USA;
developing countries (vg): Congo, Egypt, India, Cuba;
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closely cooperating countries in military and economic
areas (v7): USA, Israel, Japan. The military associations
seem to be quite justifiable since the study was conducted
at the time when the issues regarding the cold war, arma-
ment race, or Vietnam War were very popular and con-
stantly present in various media.

The proposed interpretations of dimensions in the non-
metric MDS solution generally seem to be correct; how-
ever, if we take closer look on the presented data we would
see that the data are sometimes difficult to interpret within
the Euclidean space. For instance, China seems to be
decidedly more communist than USSR and Cuba; or Japan
is significantly less noncommunist than Brazil, which
seems to be even more anticommunist than the USA.

The axes rotations do not make the interpretations much
easier. It should also be noticed that the standard stress
value for this three-dimensional MDS solution amounts to
0.1044; only after adding the fourth dimension, the stress
reaches 0.049, which is deemed as a good-quality solution
according to [47].

Given the above, it is not clear whether participants in
this experiment judged similarities using the dimensional
approach. As it can be seen from our analysis, the under-
lying nations’ similarities structure could equally come
from the way of thinking resembling the max—min opera-
tions performed on the identified attributes.
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Fig. 3 Nonmetric MDS three-dimensional solution for a nations’ similarities example of [57, p. 31]
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Table 5 Ordered reconstructing vectors (neuromatrix) with relative importance for the example with nations’ similarities [57, p. 31]

No. Nation V3 Vio Ve vy Vo Vi Vs Vi2 V2 Vi Vs Vi
2. Congo 2 1 4 1 1 4 1 2 7 1 1 1
4. Egypt 3 2 5 2 3 2 2 3 4 7 2 2
6. India 2 2 7 3 4 4 2 2 2 2 2 2
3. Cuba 7 2 4 2 2 4 2 3 4 2 2 2
9. China 5 1 1 1 7 1 1 1 3 1 1 1
12. Yugoslavia 4 3 3 2 3 2 2 7 3 3 2 2
10. USSR 4 7 2 2 5 2 2 6 2 3 2 2
5. France 3 4 2 2 2 2 7 4 3 4 3 5
11. USA 1 4 1 5 2 1 5 1 1 2 5 7
7. Israel 2 3 3 7 2 3 3 3 2 4 4 3
8. Japan 2 3 2 4 4 2 3 2 2 3 7 3
1. Brazil 1 2 2 3 1 7 4 2 1 2 3 4
ﬁi;l;:t):r?cze?/(t,i]ve 673 658 658 64.2 | 658 635 642 665 658 65 642 64.2
Eﬁ;asir‘gnces (%] 673 123 58 38 | 27 19 15 12 08 04 04 0
f:m“;r‘o“rl;tr‘l‘éz;‘;};)?ve 673 79.6 854 892|919 938 953 965 973 977 981 98.1

5 Simulation studies of the proposed
algorithm

5.1 Brute force simulations

We applied the brute force simulations to extend our
knowledge about the nature of the problem, its sophisti-
cation degree, and to provide a basis for comparison with
our heuristics. We assumed that the number of recon-
structing vectors is equal to the number of objects; thus, the
reconstructing matrix has the same dimensions as the initial
data array.

The number of all possible solutions (7,,) depends on
the number of analyzed objects (n4yj) and the number of
LOS items employed (n;os) and can be calculated in the
subsequent way:

Nsol = nztgj; o

Table 6 contains the number of variations for various
matrix dimensions and number of LOS items. The condi-
tions in italics presented in Table 6 were analyzed by a
brute force algorithm. For those cases, we generated 1000
random squared and symmetric similarity matrices with
LOS data and verified all possible variations of max—min

products for each of them. Additionally, we examined the
possibility of reconstructing matrices bigger than 5 x 5
with various npog by taking advantage of less number of
vectors than the initial matrix dimensions. We confined
only to such combinations of nj g, matrix size, and number
of reconstructing vectors when the number of variations
was lower than 16 million. Other conditions were not
analyzed since they required too much computation time.
The results of our simulations are put together in Table 7
and show percentages of fully decomposed matrices (PDF)
for each combination of a matrix size, njosg, and the
number of reconstructing vectors applied.

For the following matrices: nios = 2, ngy = 11-20;
nLos = 3, Nopj = 8-13; npos =4, nopy = 7-11; nies =5,
Nopj = 6-10; nLos = 6, Ngpy = 5-9; npLos = 8, nop; = 5-8,
the decomposition by one reconstructing vector was not
found. For these matrices, bigger numbers of vectors were
not analyzed due to a great number of variations and
unacceptable time of simulations.

The presented brute force results show that the 3 x 3
matrix size and the full reconstruction were possible for all
randomly generated matrices and analyzed ny g (from 2 up
to 10) by 3 or 2 reconstructing vectors. Matrices 4 x 4
were fully reconstructed at all times by 4 vectors for
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Table 6 Number of variations when the number of reconstructing
vectors is the same as the number of objects

nLos Matrix size

3x3 4 x 4 5x5
2 64 4096 1,048,576
3 729 531,441 3.5 x 10%
4 4096 16,777,216 1.1 x 102
5 15,625 2.4 x 10 9.5 x 1013
6 46,656 2.2 x 10% 3.7 x 10"
7 117,649 1.4 x 10" 8 x 10'°
8 262,144 6.9 x 10'° 1.2 x 10'8
9 531,441 2.8 x 10" 1.2 x 10"
10 1,000,000 102 10%°

Conditions in italics were analyzed by a brute force algorithm

nios — number of LOS items

nos = 2—4. It was not possible to check whether this result
is also true for larger nj og since the ng, was too big. The
most interesting result was obtained for the matrix 5 x 5
consisting of values represented on a binary scale (npos.
= 2, cf. Table 7). It occurred that even 5 vectors are not
enough to fully reconstruct the initial matrix in all cases.

5.2 Performance of the proposed heuristic
algorithm

The effectiveness of our heuristic procedure was examined
by performing a simulation experiment. We applied our
approach to randomly generated matrices with various
combinations of their dimensions and scales. We examined
two factors: the matrix dimension and the rating scale type.
Matrix sizes ranged from 3 x 3 up to 13 x 13 (11 levels),
whereas ny og varied from 2 up to 10 (9 levels). The applied
within-subjects design produced 99 different experimental
conditions. For every combination of the matrix size and
nyos, we generated 1000 symmetric matrices. We tried to

decompose each of the total 99,000 random matrices by
our heuristic procedure. We recorded the highest percent-
age of the initial matrix reconstruction obtained by
applying both versions of the tuning-up procedure. Matri-
ces 3 x 3 and 4 x 4 with n;og from 2 to 10 were fully
decomposed for all randomly generated matrices. The
remaining results of our simulations presenting PDF and
mean percentages of initial matrix reconstructions (MPR)
are put together in Table 8.

The simulations show that our heuristic procedure was
able to decompose all randomly generated small matrices.
This result is the same as applying brute force algorithm.
For more complex data, the percentages of full recon-
structions gradually decrease. For matrices bigger than
6 x 6 and nypg bigger than 3, the possibility of the full
decomposition drops radically far below 50%. If the matrix
is bigger than 8 x 8 and ny og is bigger than 2, then there is
almost no chances of getting the full decomposition by our
approach. We additionally performed simulations for
14 x 14 and 15 x 15 matrices including data with 7y os.
= 2. In these cases, none of randomly generated similari-
ties’ matrices was fully decomposed by our algorithm.
However, it is not known whether such full decompositions
exist at all for those similarity data.

One should notice that the mean percentage of recon-
struction is quite high. Even for the most difficult experi-
mental condition, the value is higher than 90%. The mean
percentage of reconstruction for 14 x 14 and 15 x 15
matrices with n;og =2 amounted to 92.6% (2.33) and
92.3% (2.33), respectively.

6 Applications

The presented method may be widely used in these fields of
science in which human perception is involved to judge
directly about similarities. It could be especially suited and
practically applied in situations where humans are judging
objects’ similarities in pairwise comparisons, using ordinal

Table 7 Percentages of fully decomposed 1000 random similarity matrices by a brute force algorithm

No of reconstructing vectors

M;il;:x nLos = 2 nLos = 3 nios = 4 nLos =5 nLos = 6 nos =7 nLos = 8 nios =9 nos = 10

1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
3x3 49 100 100 x x 32 100100 x 25 100100 x 21 100 100 15 100 100 14 100 100 13 100 100 12 100 100 9.2 100 100
4x4 10 51 94 100 x 3.3 37 92 1002.1 32 92 100 09 25 89 04 17 x 03 17 x 04 13 x 04 13 x 02 12 x
5x5 1.4 14 55 91 99 0.2 46 36 x 0 25 x x 0 12 x
6x6 0 1.5 15 50 x 0 02 x x 0 0 x x
7x7 0 0 27 x x 0 0 x x
8x8 0 0 x x x
9x9 0 0 x x x
10x10 0 0 x x x
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S aZaIn g scales, such as the Likert’s or linguistic ones. They may be,
o dodddddddd for instance, concerned with benchmark studies in man-
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o
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=% X [ N A A B . .
g clE|lgdggarZgoe that.should be .answered. in future studies. They concer.n
8 P detailed properties, practical usefulness, and methodologi-
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2 SRS BEEES BRI S B A cal correctness.
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GRS Nt O~ o attributes contributing to peoples’ perceptions. For such
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significantly more sophisticated problems with a large
number of possible factors, one could try to combine our
algorithm with the fuzzy formal concept analysis. From the
point of view of the described model per se, investigations
regarding the influence of its properties on the generated
results are of special interest. For instance, how the gran-
ularity of a similarity intensity scale impacts the results
quality for various tasks.

Possible future research may also focus on applying
other than our approaches for determining reconstructing
vectors such as deep learning. Some initial works in this
regard have already been performed for the Boolean matrix
factorization. Frolov et al. [88] used Hopfield-like neural
networks for this purpose. They further extended their
ideas in a series of subsequent publications [8§9-91]. Input
and output matrices of these approaches are completely
different conceptually than our proposal. Thus, direct
comparisons are not possible. However, creating a deep
learning algorithm similar to the solutions provided by
Frolov and colleagues for similarity matrices containing
ordinal-scale values would be very interesting.

Another direction of extending or improving our algo-
rithm could utilize some latest developments in optimiza-
tion research. Though some analyses emphasize the
complexity of problem of similar types (e.g., [92]), one
may try, for instance, to take advantage of interesting
extensions of classical desirability function optimizations,
especially the approach involving max- and min-type
functions (cf. [93-95]).

7.2 Theoretical advancements

From the theoretical perspective, answering the question
under what circumstances the initial objects similarity
matrix can be fully decomposed is certainly worth pursu-
ing. A possible conjecture is that such a full decomposition
is feasible for matrices where the classic triangle inequality
between all similarity ratings is conserved.

A number of future research directions and projects
could include the development of a methodology that
would deal with multiple similarity matrices. This, proba-
bly shall involve some clustering techniques. For the pre-
sented approach, one should try to determine in which
situations either liberal, conservative models shall be
applied. Moreover, an extension of our proposal may
include other types of theoretical logical relations or their
combinations that have not been demonstrated in this
paper.

There could be a potential trade-off concerned with the
specific feature of our approach that decreases the signifi-
cance of smaller attribute intensities. This might increase
the danger of excluding some factors from the final
reconstructing matrix. The problem may constitute a
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limitation of our approach, and some further studies may
focus on determining whether such a phenomenon exists,
and if so, what the scale is.

In recent decades, fuzzy sets have been intensively used
as a tool for uncertainty modeling. It results, among others,
from the nature of phenomena in many areas of interest in
science. It is especially the case in mathematical modeling
of both social and technical issues. The framework pre-
sented in this research allows for advanced analytical
constructions that take into account uncertainty. For
example, linguistic expressions of membership function
values or degrees of truth can be represented as fuzzy sets.
Then, the analysis of similarity relationships would be
based on fuzzy sets of second type. Intensive work on
extending classic approaches to develop models involving
uncertainty can be also seen in construction of algorithms
for solving differential equations. For example, in the
works [96-99], authors propose algorithms that operate on
fuzzy numbers and use the theory of kernel reproduction.
Processing and modeling of imprecision involving similar
approaches seems to be an interesting approach in analyses
related to human behavior. Hence, the cited works suggest
a possible direction of more advanced studies in this field.

Another possible extension could involve definitions of
the acceptation, rejection, and uncertainty levels of simi-
larity while considering given factors or decompositions.
Such modifications are conceptually interesting, despite the
danger of decreasing the precision of the similarity matrix
reconstruction (cf. [40]).

7.3 Validation studies

A significant problem concerned with validation of the
presented methodology is that it is not clear what frue
human being’s assessments of similarities are, and how to
identify them. The question is what should be the refer-
ence? Should this be the results of nonmetric MDS, the
structure of neurons activations in the brain? How should
these data be aggregated?—Simple average, Choquet
integral, etc.

Moreover, in a variety of factor analysis types, one can
come up with a number of qualitatively different solutions
having similar goodness-of-fit parameters. In a classic
factor analysis, it can be done by simple algebraic rotations
of eigenvectors. At the end of the day, it is up to the
investigator to select the most logical, theoretically and
practically justifiable solution, from among those possible.
Nevertheless, even without knowing the real true structure
of psychological concepts and relations between them,
these approaches are useful. They are employed very
intensively as they provide, at least, some insight into
psychological constructs.
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Despite the above-mentioned problems, there are some
ways of increasing the belief that the proposal is valid. We
showed on two simple, but well-known examples that the
idea works, that there is a theoretical background related to
how people may think about similarities. The theory cor-
responds logically to the problem we are trying to solve.

From the technical point of view, the put-forward
algorithm for seeking the LOS neuromatrices provided
satisfactory solutions both for real experimental examples
and in decomposing randomly generated data. This may be
considered as a part of an internal validation. The proce-
dure provides reasonable solutions that can be interpreted
logically, but qualitatively differently from the case of
classic approaches. These outcomes can be treated as a
basic external validation.

Naturally, some additional steps may be taken to further
validate our proposal. Given the paper length restrictions,
other, more detailed and comprehensive attempts can be
performed in subsequent studies. In the perspective of
neuroscience, future research could be directed to empiri-
cal investigations at the biological level focused on
checking if the proposed assumptions are reflected in the
brain structures’ activities. Finding patterns of brain func-
tioning could verify the suggested approach at a physio-
logical level. These investigations could take advantage of
brain imaging methods such as PET or fMRI, that occurred
to be very helpful in understanding of various neural-based
processes (cf., e.g., [100, 101]).

It seems that making decisions about similarities based
on hidden factors (neuromatrices) may also influence
visual processing strategies. Using considerably techno-
logically improved and significantly less expensive eye
tracking techniques to study similarity issue is reasonable.
The human visual behavior can be characterized by spa-
tiotemporal oculometric parameters such as saccades and
fixations. Their dynamics may be modeled by hidden
Markov models (cf. [102-108]), their fuzzy equivalents
(see [109-111]), or even Markov switching models (cf.
[112, 113]).

It can be attractive from the cognitive and behavioral
point of view to conduct experiments focused on deter-
mining relations between visual strategies and mechanisms
of making decisions about similarities modeled by neuro-
matrices introduced in this paper. Analogous studies may
also be conducted by other tools used in neuroscience such
as electroencephalography [114, 115], magnetoen-
cephalography, and facial recognition. Reviews and dis-
cussion on the usefulness of various neuroscience methods
can be found, for example, in [116, 117].

Some more classic methods may also be applied for
extended validation purposes. They may include studies
aimed at finding correlations and relations with psycho-
logical constructs with known values of similarities

between objects or concepts of various types. One may
even conduct simulations where similarities would be
generated automatically based on objects’ physical prop-
erties, such as calculated stick lengths. Another new idea is
to include retrospective thinking in the experimental pro-
cedure. In such a case, after assessing similarities, partic-
ipants explain how they evaluated them, what factors were
the most important, and in what way objects’ or concepts’
features influenced subjects’ perception.

8 Conclusion

In this paper, we propose a new approach for modeling
human thinking about objects’ similarities by searching the
neuromatrix. The neuromatrix consists of vectors that
reconstruct the LOS similarity data matrix. We search for
internal data structure using fuzzy-set theory simple oper-
ators. We have shown that given such assumptions, it is
possible to represent the initial matrix as the union of
quasi-rank-one matrices.

Conceptually, we presented a model that reflects cog-
nitive processes taking place in the brain. The process is
demonstrated in the form of linguistic expressions—pro-
vided by a human—about similarities between objects.
Uncovering hidden objects—attributes relations in the form
of neuromatrices is an attempt of specifying factors shap-
ing decisions about those similarities. From the neurosci-
entific point of view, we assume that our approach
discloses components of the cognitive perception mecha-
nism occurring at the neural level.

Technically, our scientific proposal is very closely
related to the idea that underpins PCA, FA, metric and
nonmetric MDS and correspondence analysis, namely the
eigendecomposition of a matrix of real values. Analo-
gously to classic approaches, we have attempted to repre-
sent the initial LOS data matrix as a max—min product of
some other LOS matrix, called a neuromatrix, and its
transpose. In our opinion, such an approach is appropriate
for linguistic based or ordinal data. In the max—min mul-
tiplication, the product of two values is replaced by the
intersection (min) operator, whereas the summation takes
the form of union (max values).

Our methodology is theoretically well grounded and
soundly logically justified. The idea is very simple and is
based solely on max—min operators. We think that such an
approach is closer to real human thinking about similarities
than other methods. The max-min operations are truly
natural as they are in the inner core of humans’ negotia-
tions, games, optimization, orientation and gaining of
perspective. Moreover, our methodology has a tendency to
relatively diminish the significance of smaller attributes’
intensities. This, in turn, fits well to human brain biological
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functioning where neurons are activated and pass electrical
impulse further only if superposition of input signals
exceeds a specific, minimal level. This property of our
methodology seems to be better suited to physiological
structures of the neurons than other approaches. Such a
way of handling similarities is in concordance with intu-
ition. Usually, weights of factors deciding about similari-
ties are nonlinear—some of them are more important than
the others. Those less important ones, probably, have less
impact on the overall perception.

Below, we present a brief list characterizing our
proposal:

e The theoretical foundations are in concordance with the
human thinking about similarities and basic neural
activity.

e The similarity matrix includes only values measured on
an ordinal scale.

e [t is possible to decompose the initial objects’ similar-
ities matrices.

e The decomposition uses only max and min operators
and provides reconstructing vectors that can be inter-
preted akin to classic approaches.

e The proposal provides logical results; however, their
interpretation might differ from classic approaches,
which allows for better understanding of the examined
phenomenon.

e Brute force simulation results show that starting from
the 5 x 5 matrices it is not possible to fully decompose
random objects’ similarity matrices.

e Simulation results proved that the proposed heuristic
procedure is able to reconstruct randomly generated
similarity matrices to a very high extent, even for the
most difficult examined cases.

We hope that our proposal would be interesting to other
researchers that could apply it in a variety of contexts and
extend in various directions including those that are indi-
cated in this paper.
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Appendix 1: Constructing LOS similarities
by the max-min operations

In our approach, the standard formula for matrix multi-
plication for every i and j takes the following shape:

cij = max{min{a;;, by; },min{an, by },...,min{a, by} }.
(15)

Replacing the max with U—, and the min with—
N symbols, the formula may be rewritten as

Cij = (a,-l n blj) U (a,-z N sz) J---u (Cl,'n n bnj)

= Uai,ﬁbrj. (16)
r=I1

For shorthand, we denote the set theory multiplication
by the max—min operator of the two LOS matrices as:

CrLos = Aros © Bros. (17)

The transpose of the LOS data array is defined in the
same way as for regular matrices, that means

Bios = Al o5 if b; = a;i, foreach i and j. (18)

To illustrate the introduced symbols, let us consider
a simple 3 x 3 matrix that contains assessments of relative
similarities between three objects X, Y, Z expressed on
LOS {low, med, big}. We additionally assume that each
object is very similar to itself and that if X is similar to Y to
some degree, then the similarity between Y and X is
exactly the same. Thus, we obtain the symmetric matrix
with the maximal similarity values at the diagonal, e.g.,

big low big
Eios = | low big med |. (19)
big med big

The above matrix may be represented by the max—min
product of the following square (but not symmetric) matrix
and its transpose:

big low low
low big med |. (20)
big low med

Vios =

In this paper, we call this idea LOS matrix decomposi-
tion, and the column vectors of the LOS matrix—the
reconstructing vectors (neuromatrix)—the equivalent of
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eigenvectors of classical algebra. In this example, we can
check that:

big low low
low big med
big low med
big low big
o|low big low
low med med
big low big
low big med
big med big

T
VLOS o VLOS =

= Eros;

for example:

w11 wi2 Wik
Wil W22 Wak
V) = , Vo = . yeooy Vg = . R

_Wnl i Wn2 Whak
Win
Won

= . s
_Wnn_

(26)
are the column vectors of Vi g of size n.

Proof of (25) First, according to the product formula

eLos(l) = max{min{big, big}, min{low, low}, min{med, low}}from (16) for a LOS data matrix, each component of

= max{big, low, low) = big,

Cros = Vios © Vips (27)

(21) may be calculated as:
eros(23) = max{min{low, big}, min{big, low}, min{med, med} } n
= max{low, low,med} = med, Cj = kL:Jl Wik [ ng’ (28)
(22)

and so on, for every i and j.

To use the approach for dimensionality reduction and
searching for the data structure, it is necessary to check
whether it is possible to represent the initial matrix as a
union (the equivalent of summation in set theory) of outer
products of the LOS vectors. In other words, to perform a
quasi-rank-one decomposition using only the set theory
operators plus the transpose. Let the union (max) operator
for two LOS matrices be defined as follows:

CrLos = ALos UBLos, (23)

where ¢; = max{a;;, b;} for every i and j.
It can be shown that if for the given LOS matrix Cog
there exists such a LOS matrix Vi g that

Vios © Vios = Cros, (24)

then the initial matrix Cy og may also be represented by a
union of the matrices constructed in a similar way as the
outer product in the conventional algebra, i.e.,

n
CLOSzvlov{UVzovgu...UvnovE: kaovz,
k=1

(25)

where

where w;; is an item of the Vi g array. Because of (18), we
obtain:

Cij = U Wik n Wik. (29)
k=1

On the other hand, we state that C os can be represented by
a union of outer products of LOS reconstructing vectors
(cf. (25)). Let us denote the individual outer product array
as

Cr=viov,. (30)

Since vy is a column vector and VZ is a row vector, there is
only one component from (16) involved in obtaining every
outer product item for the kth array, namely:

Due to (18), (31) is equivalent to
Wik N Wik (32)

Now, making a union of all of the outer products, and
taking advantage of (23) we arrive at the following for-
mula, identical to (29):

Cij = (W,’] N le) U (W,’g N sz) U---u (W,‘n N Wj,,)
n
= U Wik O Wik,
k=1

which was to be demonstrated.

For the example presented in (20), the outer product
decomposition takes the following form:
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big Appendix 3: The similarity array
low | o [big low big] S for the example with nations
bz_g The original data from [57, p. 31] were rounded and
low rescaled such that the minimal value equals one, while the
U big | o [low big low] maximal scale value amounts to seven.
| low
( low No Nation . 2.3 4 5 6 7. 8 9 10. 1. 12
U | | med | olow med med]
1.  Brazil 7 4 4 2 4 4 3 3 1 2 4 2
med
- _ 2. Congo 4 7 4 4 3 4 2 2 3 2 1 3
big low  big low low low 3. Cuba 4 4 74 3 33 2 5 4 2 4
= |low low low | U |low big Ilow 4.  Egypt 2 4 4 7 4 5 4 3 3 3 2 3
big low big low low low | 5. France 4 3 34 7 2 3 3 3 4 5 4
low low low big low big 7 6. India 4 4 3 5 2 7 3 4 3 4 3 3
Ul tow med med| = |iow big med| = Eyos. 7. Tsrael 3 2 34 3 3 7 4 2 3 5 3
. . 8.  Japan 3 2 23 3 4 4 7 3 4 5 3
low med med big  med big | 9. China 1 3 53 33 23 7 5 2 4
(33)  10. USSR 2 02 43 4 43 45 7 4 6
11. USA 4 1 2 2 5 3 5 5 2 4 7 3
12. Yugoslavia 2 3 4 3 4 3 3 3 4 6 3 7
Appendix 2: The similarity S array
for the example with colors
The original data from [54] were rounded and rescaled
such that the minimal value equals one, whereas the
maximal amounts to eleven. Colors in the second column
were generated by Spectra software, which converts the
wavelengths to the RGB color system [118].
Wave 1. 2. 3 4. 5. 6 7 8 9 10. 11. 12. 13. 14
No Color l?rrllr%lt]}l - - - - - 3 -
1. ] 434 11 10 5 5 3 2 2 1 1 2 2 2 2 3
2. ] 445 10 11 6 5 3 2 2 2 1 1 2 2 2 2
3. [ | 465 5 6 11 9 6 3 2 2 1 1 1 1 2 1
4. [ | 472 5 5 9 11 6 4 2 2 1 1 1 1 1 1
5. 490 3 3 6 6 11 7 4 4 2 1 1 1 1 1
6. 504 2 2 3 4 7 11 7 6 2 2 1 1 1 1
7. 537 2 2 2 2 4 7 11 8 3 2 2 1 1 1
8. 555 1 2 2 2 4 6 8 11 4 3 1 1 1 1
9. 584 1 1 1 1 2 2 3 4 11 7 5 4 3 3
10. 600 2 1 1 1 1 2 2 3 7 11 8 6 5 4
11. 610 2 2 1 1 1 1 2 1 5 8 11 9 7 7
12. | 628 2 2 1 1 1 1 1 1 4 6 9 11 10 8
13. ] 651 2 2 2 1 1 1 1 1 3 5 7 10 11 9
14. [ ] 674 3 2 1 1 1 1 1 1 3 4 7 8 9 11
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