
  

WORMS/22/01 
  W

OR
kin

g 
pa

pe
rs

 in
 M

an
ag

em
en

t S
cie

nc
e 

 

 Purchasing decisions on 
alternative fuel vehicles within the 

agent-based model  
 

Arkadiusz Jędrzejewski1,  
Katarzyna Sznajd-Weron2, Jakub Pawłowski2, 

Anna Kowalska-Pyzalska1 
 
 

1Department of Operations Research and Business Intelligence, Faculty of 
Management, Wrocław University of Science and Technology 

2Department of Theoretical Physics, Faculty of Fundamental Problems of 
Technology, Wrocław University of Science and Technology 

 

WORMS is a joint initiative of the Management Science departments  
of the Wrocław University of Science and Technology, 

Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland 

 



Purchasing decisions on alternative fuel vehicles
within the agent-based model ⋆

Arkadiusz Jędrzejewski1[0000−0002−7965−2014], Katarzyna
Sznajd-Weron2[0000−0002−1851−8508], Jakub Pawłowski2[0000−0002−3607−2191],

and Anna Kowalska-Pyzalska1[0000−0002−6422−0710]

1 Department of Operations Research and Business Intelligence, Faculty of
Management, Wrocław University of Science and Technology, Wrocław, Poland

2 Department of Theoretical Physics, Faculty of Fundamental Problems of
Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland

arkadiusz.jedrzejewski@pwr.edu.pl

Abstract. We develop an empirically grounded agent-based model to
explore the purchasing decisions of mutually interacting agents (con-
sumers) between three types of alternative fuel vehicles. We calibrate the
model with recently published empirical data on consumer preferences
towards such vehicles. Furthermore, running the Monte Carlo simula-
tions, we show possible scenarios for the development of the alternative
fuel vehicle market depending on the marketing strategies employed.
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1 Introduction

According to experts, the achievement of the goals of sustainable transport re-
quires an increase in the share of vehicles powered by alternative fuels (AFV)
in road traffic [7,2]. Among these cars, battery electric vehicles (BEVs), plug-in
electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) are mainly in-
cluded. Although the market share of AFV is constantly increasing worldwide,
its smooth diffusion encounters a number of barriers including lack of sufficient
charging infrastructure, high prices, and safety issues [12].

There are a number of studies on the technical, economic, social, and psycho-
logical factors that influence the choice of vehicle type when deciding to purchase
it. The authors use various stated preferences methods to analyze what factors
determine the decision to buy a certain type of a vehicle [6,1]. Apart from that,
a large number of simulating and modeling studies, making usage of agent-based
modeling (ABM), have been recently published [11,4,3]. ABM allows us, among
others, to investigate how the individual decisions of the agents (i.e., households,
consumers, etc.) and their social interactions lead to effects on the macroscopic
level (e.g., market penetration of a given good). Based on [10,11,8,9], we propose
⋆ Supported by the National Science Center (NCN, Poland) through Grant No.
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an empirically grounded agent-based model with explicitly introduced interac-
tions with local and global neighborhoods. Our proposed approach allows the
model to be easily developed in the future, for example, taking into account space
heterogeneity, individual consumer preferences, or interactions in online social
networks. However, here, we focus on the zero-level approach, in which the en-
vironment is represented by a regular grid, and the agents are homogeneous in
terms of preferences. This allows us to determine what is the importance of ex-
ternal factors such as global marketing or different government policies. What is
even more important, it allows other researchers to replicate the results, which
in our opinion is necessary for reliable model verification.

2 The model

We consider a square L × L lattice with periodic boundary conditions. The
linear size of the system L = 100 is taken in most of our simulations. Each
node is occupied by exactly one agent, and thus the total number of agents in
the system equals N = L2. Each agent has exactly four neighbors due to the
network structure, and it can own exactly one car.

Initially, the agents do not have cars. We use a random sequential updating
scheme, which mimics continuous time. It means that in an elementary update,
only one agent is selected randomly from all N agents, and a single Monte Carlo
step consists of N elementary updates. The selected agent buys one car picked
from the alternative fuel vehicle choice set. Motivated by the empirical studies
[5], in our simulations this set includes in total 75 cars, 25 of each type (HEV,
PHEV, and BEV). All cars are characterized by 5 attributes that are 5-level
discrete variables. Car profiles are taken from the conjoint analysis: Tables 13,
16, and 17 in [5]. The vehicle attributes impact the overall utility that comes
from purchasing a given car. The total utility of car j ∈ {1, 2, ..., 75} is the sum
of partial utilities associated with the attributes of this car:

Uj =
5∑

n=1
PUj,n, (1)

where PUj,n is the partial utility of the n-th attribute of car j. These utilities
were estimated also through the conjoint analysis of consumers’ preferences:
Table 14 in [5]. To distinguish between different types of cars, we introduce a
function:

f(j) =


HEV if the j-th car is HEV,

PHEV if the j-th car is PHEV,

BEV if the j-th car is BEV.

(2)

Following [11,9], we assume that the consumer decision-making process de-
pends not only on the total utility of a vehicle, but also on additional exter-
nal factors that account for marketing, social influence, and the availability of
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recharging facilities. Thus, the probability that agent i ∈ {1, 2, ..., N} buys car
j is expressed by the following multinomial logit model:

Pi,j =
Wi,f(j) · RFEf(j) · exp (Uj)∑75

j=1 Wi,f(j) · RFEf(j) · exp (Uj)
, (3)

where Wi,f(j) is the willingness of agent i to buy a car of a given type, which
captures the impact of marketing and social influence, whereas RFEf(j) is the re-
fueling effect, which reflects the availability of recharging facilities for a given car
type. The refueling effect accounts for agents’ concerns related with low ranges
of some AFVs, like PHEVs and BEVs. We include this effect in a functional form
that has already appeared in previous studies [10,11,9]:

RFEf(j) =


1 if the j-th car is HEV,

1 − DPe−αPHEVNPHEV/N if the j-th car is PHEV,

1 − DPe−αBEVNBEV/N if the j-th car is BEV,

(4)

where DP is a driving pattern characterized by the society, NPHEV and NBEV are
the numbers of agents that have already adopted PHEVs and BEVs, respectively,
whereas αPHEV and αBEV are scaling parameters used to calibrate the model.

The novelty of our model is the formula describing the willingness of agent i
to buy a car of type f(j):

Wi,f(j) = hf(j)︸ ︷︷ ︸
marketing

+ plki,f(j)/k︸ ︷︷ ︸
local influence

+ pgNf(j)/N︸ ︷︷ ︸
global influence

+ 1︸︷︷︸
independence

, (5)

where hf(j) reflects the effectiveness of marketing for vehicles of a given type, pl is
the strength of local social influence, pg is the strength of global social influence,
ki,f(j) is the number of neighbors of agent i that already possess vehicles of a
given type, k = 4 is the total number of neighbors of an agent, and Nf(j) is the
total number of agents in the system that have vehicles of a given type. The
first term of formula (5) captures not only the influence of advertisements and
promotions, but also the effectiveness of various policies, benefits, and advantages
related to AFVs, like subsidies, tax releases, or free parking spaces. We assume
that all vehicles with the same engine type are described by the same value of
parameter hf(j), and thus it takes only three values: hHEV, hPHEV, and hBEV.

Regarding social influence, we distinguish between local and global one, just
like in [8]. The local influence (word-of-mouth), the second term of Eq. (5), is
proportional to the fraction of neighbors with cars of the same type as the consid-
ered car. Similarly, the global influence, the third term of Eq. (5), is proportional
to the fraction of all agents in the system having such cars.

The algorithm to simulate our model is as follows:

0. Set parameters of the model: L, DP , αPHEV, αBEV, hHEV, hPHEV, hBEV, pl,
and pg as wll as the time horizon of the simulation, T . Initialize the system.
Set time t = 0.



4 A. Jędrzejewski et al.

1. Count the number of agents in the system that have cars of each type, i.e.,
NHEV, NPHEV, and NBEV.

2. Calculate the refueling effect from Eq. (4) for PHEVs and BEVs, i.e., RFEPHEV,
and RFEBEV.

3. Draw number i from discrete uniform distribution U{1, N}. Agent i is se-
lected to buy a car.

4. Count the number of neighbors of agent i that have cars of each type, i.e.,
ki,HEV, ki,PHEV, and ki,BEV.

5. Calculate the willingness of agent i to buy a car of each type from Eq. (5),
i.e., Wi,HEV, Wi,PHEV, and Wi,BEV.

6. For each j ∈ {1, 2, ..., 75}, calculate the probability that agent i buys car j,
i.e., Pi,j from Eq. (3).

7. Draw number u from continuous uniform distribution U [0, 1].
8. Find index m such that

∑m−1
j=1 Pi,j ≤ u <

∑m
j=1 Pi,j . Agent i buys car m.

9. Update time t → t + 1/N . If t < T , go to point 1.

3 Results

To calibrate the model, we run first simulations without any marketing and
social influence (hHEV = 0, hPHEV = 0, hBEV = 0, pl = 0, and pg = 0), and
we tune the values of αPHEV and αBEV so that the stationary adoption levels
of HEVs, PHEVs, and BEVs correspond to those estimated based on the survey
conducted in [5]. In the survey, 48.8% of respondents declared that they would
buy HEV, 32% PHEV, and 19.3% BEV. We get similar levels of adoption for
αPHEV = 2.6 and αBEV = 0.05, see Fig. 1(a). Not having data for Poland, we
set DP = 0.49, which approximates the aggregate driving pattern for Germany
[10]. All the results we present are averaged over 40 independent simulations.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
(a)

MCS

a
d
o
p
ti
o
n
le
v
el

HEV

PHEV

BEV

NONE

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
(b)

MCS

a
d
o
p
ti
o
n
le
v
el

Fig. 1. Adoption levels of AFVs in a system without marketing (hHEV = hPHEV =
hBEV = 0) and social influence (pl = pg = 0) as a function of time measured in Monte
Carlo steps: (a) DP = 0.49 (driving pattern for Germany [10]) and (b) DP = 0.78
(driving pattern for Iceland [11]). NONE represents the fraction of agents without a
car.
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After calibrating the model, we want to check how the driving pattern DP
and different policies impact the behavior of the model. To check the former,
we simulate the system with the same values of parameters that were obtained
within the calibration for DP = 0.49, but this time with DP = 0.78. This value
characterizes countries with longer average daily driven distances, like Iceland
[11]. In Fig. 1(b) it is seen that increasing DP leads to a higher adoption level
of HEVs at the expense of BEVs.

Next, we investigate how marketing campaigns targeting only one type of
AFVs impact their stationary adoption levels. Figures 2-4 present the results for
the systems where only HEVs, PHEVs, and BEVs are advertised, respectively.
Under stronger social influence, marketing targeted at HEVs leads to their higher
adoption level. The opposite happens in the case of PHEVs and BEVs. However,
for HEVs, stronger social influence causes smaller gains in the adoption level
that result from the increase of the advertising strength, see Fig 2. This dimin-
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Fig. 2. Impact of campaigns promoting only HEVs (hPHEV = hBEV = 0) on the
systems with different strengths of social influence: (a) pl = pg = 0, (b) pl = pg = 2,
and (c) pl = pg = 4.
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Fig. 3. Impact of campaigns promoting only PHEVs (hHEV = hBEV = 0) on the
systems with different strengths of social influence: (a) pl = pg = 0, (b) pl = pg = 2,
and (c) pl = pg = 4.
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Fig. 4. Impact of campaigns promoting only BEVs (hHEV = hPHEV = 0) on the
systems with different strengths of social influence: (a) pl = pg = 0, (b) pl = pg = 2,
and (c) pl = pg = 4.

ishing effectiveness of marketing is related to the high initial adoption of HEVs.
In contrast, we can achieve a considerable increase of PHEV adoption for a
low intensity of advertisements when the social influence is strong enough, see
Fig. 3(c).

4 Discussion

Within our simple ABM, we were able to get similar results to those in [5] in
terms of consumer choices between three types of alternative fuel vehicles: HEV,
PHEV, and BEV. The calibration of the model allowed us not only to reflect
the current sentiments on the market, but also show that the local and global
impact is not always conducive to the spread of new solutions. That is why ad-
vertising is needed, the strength of which must depend on the strength of social
interaction to be effective. The results have revealed that the largest market
share is gained by the vehicle type which is sufficiently advertised. This obser-
vation proves how important marketing strategies and governmental policies are
regarding the promotion of a given type of vehicle.

We have also observed that social influence can either strengthen the effect
of advertising (for HEVs) or reduce it (for PHEVs and BEVs). This may be
related to the greater popularity of HEV among drivers, and thus the frequency
of information and opinions provided on this subject. On the other hand, PHEVs
and BEVs are still less popular mainly due to their high price and limited network
of charging stations, and thus the local and global influence may have a negative
effect on the diffusion.

Our model let us also observe the impact of the value of driving pattern, DP ,
on the adoption level and vehicles’ diffusion. The comparison of the results for
medium and high values of DP indicates that BEV adoption is higher in more
densely populated countries where the average distances covered are smaller,
and the network of charging stations is denser. Being aware of the weaknesses
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of our model (including homogeneous agents, simple network topology, etc.), we
believe that the model can be easily further developed to capture more realistic
assumptions.
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