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Abstract

We propose a novel electricity price forecasting model tailored to intraday markets with continuous trading. It is based on distri-
butional deep neural networks with Johnson SU distributed outputs. To demonstrate its usefulness, we introduce a realistic trading
strategy for the economic evaluation of ensemble forecasts. Our approach takes into account forecast errors in wind generation
for four German TSOs and uses the intraday market to resolve imbalances remaining after day-ahead bidding. We argue that the
economic evaluation is crucial and provide evidence that the better performing methods in terms of statistical error metrics do not
necessarily lead to higher trading profits.
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1. Introduction

The European power trading landscape is undergoing signif-
icant changes as the generation from renewable energy sources
(RES), such as wind and solar, continues to grow, accompanied
by ongoing market integration and active demand-side manage-
ment Grossi and Nan (2019); Maciejowska (2020). They make
it more difficult to balance the supply and demand sides in the
power system, mainly due to high uncertainty regarding the
RES generation during the day-ahead (DA) auction. Therefore,
we observe the shift towards shorter time horizons in electric-
ity trading. The day-ahead market, which traditionally played a
crucial role in electricity trading in Europe, is now slowly los-
ing the market share to the intraday (ID) trading. Between years
2021 and 2022, the volume traded on European intraday mar-
kets (operated by EPEX) increased by 9%, while the day-ahead
– decreased by 5% (EPEX, 2023).

This gradual change of focus is not yet visible in the elec-
tricity price forecasting (EPF) literature. The search of Scopus-
indexed1 articles reveals that only around 3% of EPF articles
consider the topic of intraday electricity price forecasting.

Among the existing literature, researchers focus on few dis-
tinct topics. Kiesel and Paraschiv (2017) investigate the bid-
ding behavior of German intraday electricity market partici-
pants and link the RES generation forecast errors to the elec-
tricity price changes. Narajewski and Ziel (2020a) and Marc-
jasz et al. (2020) focus on forecasting the ID3 index – the most
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1the EPF articles were queried using TITLE-ABS-KEY(‘‘electricity

price*’’ AND (‘‘forecast*’’ OR ‘‘predict*’’ )) query, while
the intraday EPF ones — TITLE-ABS-KEY(‘‘electricity price*’’

AND (‘‘forecast*’’ OR ‘‘predict*’’ ) AND (‘‘intraday’’ OR

‘‘intra-day’’))

commonly used proxy for the German intraday price (see Sec-
tion 2). Janke and Steinke (2019) conduct a forecasting study
with the focus on the quantiles of the price distribution for the
last three hours of trading before the delivery. Linear regres-
sion models and an ensemble of neural networks are compared
to several naive benchmarks. Narajewski and Ziel (2020b) and
Serafin et al. (2022) propose ensemble forecasting methods for
the continuous intraday markets, which in case of the latter
paper, are used as a basis for a trading strategy which serves
as a tool for the economic evaluation of electricity price fore-
casts. This particular direction is recently gaining attention of
researchers and as Hong et al. (2020) and Maciejowska et al.
(2023) argue, it is an important aspect of the model evaluation
that at the same time is commonly overlooked in the literature.

In this paper, we address the aforementioned existing liter-
ature gap and extend the trading strategy proposed by Serafin
et al. (2022) with a more realistic (from a perspective of a wind
power plant owner) set of assumptions. More precisely, we con-
sider wind generation forecast errors and use the intraday mar-
ket to cover the imbalance left after the day-ahead bidding. Ad-
ditionally we argue that the economic assessment of the forecast
is the key factor in choosing the optimal approach from the per-
spective of the decision maker. Moreover, we propose a novel
ensemble prediction model based on the well-performing ma-
chine learning approach of Marcjasz et al. (2023) and show that
– albeit the results of the statistical evaluation are not unani-
mous – it is the best among tested methods in all trading simu-
lations we performed.

The rest of this paper is structured as follows. In Section 2
we describe datasets used in this study. In Section 3 we pro-
vide the description of forecasting models while in Section 4
we introduce the “building blocks” that the models use – from
point forecasting methods, through probabilistic and path tra-
jectories to prediction band generation algorithm. In Section 5
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we introduce trading strategies that are used for the economic
evaluation of forecasts. Section 6 demonstrates the results of
statistical and economic evaluation and provides a discussion
on the applicability of both approaches. Lastly, Section 7 con-
cludes the findings of this paper.

2. Data

2.1. Market description

Unlike the auction-based markets, the German intraday con-
tinuous trading does not have a single price for the product (i.e.,
for the delivery of a set amount of electricity over a given pe-
riod). Instead, the price depends on the moment of entering the
market – and as a result, we are presented with the price tra-
jectory. The trajectory starts at 16:00 on the day preceding the
delivery and ends 5 minutes before the delivery begins. The ex-
change lists three price indices: IDfull, ID1 and ID3, that are
computed as a volume-weighted average price of transactions
in the whole trading period, last hour before the delivery and
last 3 hours before the delivery, respectively. While the indices
are informative – they provide an approximation of the price
via a single value – they do not present the whole information,
especially regarding the trading opportunities.

We use the same dataset as Serafin et al. (2022) to facili-
tate the comparison. The dataset comprises the transaction
data (price, volume and timestamp) for the hourly contracts on
the German intraday electricity market covering period from
15.06.2017 to 29.09.2019. The first 364 days serve as an initial
calibration window for the point forecasts, followed by three
91-day calibration periods: for the probabilistic forecast esti-
mation based on the point ones (for the LASSO-based method),
for the path forecasts and finally for the simultaneous cover-
age probability (see Section 5.3). This leaves a 200-day out-
of-sample test period for the path forecasts. The data split is
visualized in Figure 3 in Serafin et al. (2022).

The data contains the raw info for each of the executed trans-
actions (timestamp, volume and price). To make the data bet-
ter suited for modeing, we use an aggregated view of the mar-
ket data. From the raw transaction data, we extract volume-
weighted average prices (VWAPs) of the 15-minute timeframes
that constitute the ID3 index, for a total of 12 subperiods. How-
ever, the first subperiod only considers 10 minutes of the data
(in the modeling framework, we use information that is avail-
able 3 hours before the delivery, we allow 5 minutes for gather-
ing the data and running the models) and the last two subperiods
are ignored (as the last 30 minutes of trading is limited – only
trades within the control zones are allowed). We therefore use
10 subperiods for evaluation of the strategy.

Having the VWAPs for the 10 subperiods t1, . . . , t10, we can
use them as an approximation of the price trajectory – and as
Serafin et al. (2022) state – it also is more realistic for selling
larger volumes than the prices of single transactions.

2.2. Exogenous data

Aside from the market data, we also have exogenous se-
ries that are used in the model. Firstly, we have German wind

Figure 1: Map of Germany with the approximate geographic division to four
zones covered by the service of respective TSOs.

power generation data – hourly values describing the forecasted
(day-ahead forecast) the generation and the series of actual (ob-
served) values. We assume that the actual data is available with
only a small delay (such data is publicly available, e.g. on the
ENTSO-E platform ). Secondly, we have similar data regarding
the forecasted and actual load for Germany. For the depiction
of the exogenous data (the day-ahead forecasts) we refer the
reader to Figure 4 in Serafin et al. (2022).

2.3. Wind data for realistic strategy
The wind data described in the previous paragraph corre-

spond to the nation-wide values. However, to better approx-
imate what is the imbalance after the day-ahead bid and the
update of the wind generation forecasts, we need to take the
location of a power plant (as the wind gusts are not uniform
over the whole country). We use the wind generation forecasts
from the four German transmission system operators (TSOs):
Amprion, 50Hertz, TenneT and Transnet-BW. For each zone,
we have a set of two forecasts of the zonal wind generation,
the day-ahead one (which is a basis for computing the volume
sold on the day-ahead market) and the one closer to delivery
(assumed to be equal to the generation), the difference of which
needs to be purchased or sold on the intraday market (see Sec-
tion 5.2.2).

3. Models

This section describes the three models we use for the gener-
ation of prediction bands – each comprises of various “building
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Figure 2: Hourly zonal imbalance plots for four German delivery zones.

blocks” (see Figure 3), however all of them use the same ap-
proach to obtain the prediction bands from the path forecasts
– the Direct method described in Section 4.5. The respective
steps are introduced in Section 4.

3.1. The DDNNC approach

The novel approach we introduce combines distributional
neural networks and Gaussian copula-modeled temporal depen-
dencies. As described in Section 4.1, the neural network out-
puts the probability density function directly – there is no in-
termediate point forecast created in the process. The steps for
creating the path forecasts from the probabilistic one, choosing
the starting point for the paths and prediction band computa-
tion are identical to the LQC method of Serafin et al. (2022).
More specifically, first trajectory forecasts are computed, with
temporal dependencies between the sub-periods modeled using
a Gaussian copula. Next, vectors of innovations are affixed to
randomly drawn values from the probabilistic forecast for t1

Figure 3: Flowchart presenting the “building blocks” of the forecasting ap-
proaches introduced in Section 3, based on the computational techniques de-
scribed in Section 4.

sub-period and eventually, the Direct approach is used for com-
puting the prediction bands.

3.2. The LQC approach

The so-called LQC approach proposed in Serafin et al.
(2022) comprises three main parts: LASSO point forecasting
model, quantile regression (to obtain probabilistic forecasts)
and – like the DDNNC approach – copula-modeled structure
of temporal dependencies. The QR is used to compute 99 per-
centile forecasts based on the point predictions. The 99 per-
centiles are linearly interpolated to obtain more granular quan-
tiles, there is also extrapolation to the minimum and maximum
prices for the extreme values.

3.3. LASSO bootstrap approach

Lastly, we use the better of the two point forecast-based
methods described in Serafin et al. (2022): LASSO bootstrap.
The approach uses LASSO point predictions as the base for ob-
taining price paths - it additionally samples vectors of historical
point forecast errors to “correct” for the observed temporal de-
pendency. This particular method proved to be an extremely
well performing benchmark despite its simplicity.
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Figure 4: Visualization of the deep distributional neural network (DDNN) structure with the inputs similar to the LASSO defined in Eq. 1, and two hidden layers.
The size and activation functions were chosen automatically in the hyper-parameter optimization study. For simplicity inputs in bold represent vectors of respective
variables, i.e. ID3 and DA represent lagged DA and ID3 values whereas W and L correspond to forecasted and actual values of load and wind generation used in
in Eq. 1. Note that the neural network outputs the distribution of price for day d, hour h and j-th time period t j, j = 1 : 10.

4. Methodology

4.1. DDNN

Distributional deep neural networks are feed-forward net-
works that – compared to their point counterparts – differ only
slightly in the structure (see Fig. 4) and are trained to mini-
mize the log-likelihood instead of error metrics such as mean
absolute error (Marcjasz et al., 2023). The network used in this
study is a deep structure with outputs that create (via a four-part
parameter layer corresponding to the four distribution parame-
ters) an output in form of a Johnson SU distribution (Johnson,
1949). The model for predicting the distributions of VWAP for
a given j-th subperiod ( j = 1, ..., 12) for delivery at day d, hour
h consists of the following 102 inputs:

1. 21 past ID3 index values (newest avaiable at the time of
forecasting)

2. 25 day-ahead prices, ranging from day d−1, hour h to day
d, hour h

3. the day-ahead forecast of 25 hourly values of wind gener-
ation and day-ahead load forecast (day d−1, hour h to day
d, hour h)

4. the actual wind power production and observed load for
the last observed hour (4 hours preceding the delivery) and
hour h of day d − 1

5. last VWA price of the 15-minute interval (period spanning
from 3h15m to 3h before the delivery)

6. a multi-valued indicator variable corresponding to the
modeled subperiod j

Note, that we do not use dummies corresponding to the
weekday or hour of the day in the model in a fashion similar
to the day-ahead models, as this information is strongly corre-
lated with the day-ahead prices and load forecasts. The model,
however uses a dummy to mark the training samples coming
from j-th subperiod. The original formulation of the model
proposed by Serafin et al. (2022) did not have this information,

as 12 separate models were trained, one for each future hori-
zon (see Section 4.2). Based on a limited numerical study, for
this particular deep neural network model it is beneficial to use
only one model that has a vastly larger set of training samples.
Moreover, unlike for the LASSO model (that follows the orig-
inal formulation of Serafin et al. (2022)), the input data is not
preprocessed in any way (aside from the batch normalization
applied in the neural network). The non-linear model structure
is expected to fit well to the non-linear patterns in the data (Hill
et al., 1994; Jȩdrzejewski et al., 2022).

The calibration window used in the neural network training
was 364 days (24 · 12 · 364 samples), 20% of which were ran-
domly left out as an unseen data for the validation. Whenever
the forecast error on the validation set did not improve in the last
50 iterations over the whole dataset, the training is assumed to
be finished (and the weights from iteration that yields the low-
est validation error are restored). The process is called early
stopping and is a common practice in the literature (Lago et al.,
2018; Yao et al., 2007).

Due to the randomness of the neural network training pro-
cess, the results of consecutive runs (training processes – the
trained network is deterministic) vary – for a more robust per-
formance, it is a standard practice to train multiple neural net-
works (in this case, using the same data) and treat their com-
bined ouptut as the final outcome of the model (here, horizontal
(qAve) averaging was used, following Marcjasz et al. (2023)).
The results reported in this paper correspond to the ensemble
of 5 identical (w.r.t. the structure and input data) neural net-
works trained separetely, using the same hyper-parameter set
(see paragraph below). Also, Fig. 7 presents the impact and
variance of the profit from the trading strategy depending on
the size of the ensemble.

The aforementioned hyper-parameter set was chosen in an
additional optimization study, in which only the initial calibra-
tion data (the first 364 days of the dataset) was used to avoid
an ex-post optimization. The last 13 weeks (91 days) of that
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were allocated as a hyper-parameter validation dataset. The
process of hyper-parameter optimization, in simple terms, was
an iterative training of neural networks using different hyper-
parameter values and evaluating them on the hyper-parameter
evaluation dataset. In more detail, for each hyper-parameter
set, there were 7 neural networks trained – each was evaluated
on only 13 of the 91 validation days. This was done to make
the hyper-parameter optimization more robust, as it limits the
impact of the randomness on the optimization process. The
hyper-parameter sets were chosen using Tree-structured Parzen
Estimator implemented in the optuna package for Python – so
the consecutive trials were based on the history of values the
tested so far. Finally, the network was trained five times inde-
pendently (using a random starting points for the weights in the
model) with the chosen hyper-parameter set – the predictons
made using these five trained networks constitute an ensemble.
During the hyper-parameter calibration, the following hyper-
parameters were determined:

• activation function for both hidden layers, (independently)
chosen from sigmoid, relu, elu, tanh, softplus and softmax

• the number of neurons in both hidden layers (indepen-
dently) – an integer from 16 to 1024

• the initial learning rate for the ADAM algorithm (float
ranging from 10−7 to 10−1)

• dropout application (yes/no) and, if yes, the dropout rate –
float from 0.0 to 1.0

4.2. Generating LASSO point forecasts
The LASSO-estimated point forecasts were generated using

the same model as in Serafin et al. (2022), with the baseline
model for the VWA of hour h on day d is (for the j-th subperiod
before the delivery) given by:

Xd,h,t j = β0 +

24∑
i=4

βi−3ID3d,h−i +

24∑
i=0

β22+iDAd,h−i︸                                       ︷︷                                       ︸
past ID3 and past/forward-looking DA prices

+

24∑
i=0

β47+iŴd,h−i + β72Wd,h−4 + β73Wd,h−24︸                                               ︷︷                                               ︸
wind generation forecasts and past values

+

24∑
i=0

β74+iL̂d,h−i + β99Ld,h−4 + β100Ld,h−24︸                                              ︷︷                                              ︸
load forecasts and past values

+ β101Xd,h,t0︸     ︷︷     ︸
last VWA price

+ εd,h,t j , (1)

where ID3d,h denotes the value of the ID3 price index for day
d and hour h, DAd,h is the day-ahead price for day d and hour
h, Ŵd,h and Wd,h are, respectively, the day-ahead predicted and
actual wind generation for day d and hour h, L̂d,h and Ld,h are
the day-ahead predicted and actual system-wide load for day
d and hour h, respectively, and Xd,h,t0 is the last known VWA

price, i.e., the VWA price of transactions between 3 hours and
15 minutes and 3 hours before the delivery. The last regressor is
widely used in the literature on forecasting the ID3 index prices
(Marcjasz et al., 2020; Narajewski and Ziel, 2020a). Note, that
for the sake of simplicity the notation ID3d,h−i refers to the ID3
index value i hours before the day d and hour h even though the
h − i might be negative.

Note, that the inputs are identical to the ones used in the
DDNN methdod (Section 4.1), with the omission of the vari-
able indicating the modeled subperiod j. Instead, 12 separate
models are constructed, one for each day d, hour h and sub-
period j – although the inputs are exactly the same for each j,
the modeled dependencies can be different, as LASSO method
automatically limits the impact of less relevant input values, ef-
fectively creating 12 (possibly) different models (constructed as
subsets of the baseline model) for each day and hour. As in the
original paper, the calibration window had length of 364 days.

However, unlike in the DDNN model, the input data series
undergo a variance stabilizing transformation, following Ser-
afin et al. (2022) description. Each input series is independently
normalized by subtracting the in-sample median and dividing
by the in-sample median absolute deviation adjusted by the 75-
th percentile of the standard normal distribution. Finally, the
area hyperbolic sine is applied as the so-called variance stabi-
lizing transformation (Uniejewski et al., 2018). This allows the
data to be better suited for the linear model (and normalize the
variances of all input series, which is beneficial for the LASSO
method).

The model is estimated using the LASSO operator (Tibshi-
rani, 1996), that implicitly (via the regularization of the model’s
coefficients) selects only the relevant inputs (note, that this re-
sults in a set of 24 hourly models that possibly use a different
information set). The regularization parameter is in this study
chosen automatically from a set of 50 values (that are automat-
ically computed) through a cross validation procedure with 3
folds. The method is implemented in scikit-learn library for
Python (Pedregosa et al., 2011).

4.3. Computing quantile forecasts using LASSO point esti-
mates

Having the point LASSO forecasts as described in the previ-
ous Section, we use quantile regression with 91-day calibration
window to generate an approximation of the probabilistic fore-
cast. For each of the percentiles, we estimate its based on the
previous forecast values and the actual values. Since we do it
separately for each of the 10 sub-periods, we might observe a
so-called quantile crossing (i.e., non-monotonic approximation
of the percentiles), we prevent it by sorting the percentile es-
timates, as suggested by Maciejowska and Nowotarski (2016),
Serafin et al. (2019) and Serafin et al. (2022).

4.4. Generating path forecasts

The study uses two different schemes of obtaining the path
forecast (which are later used to construct the prediction bands
in Section 4.5; note however, that in general the path forecast
is not required for the prediction band to be generated (see e.g.,
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AQL method in Serafin et al. (2022)). One of the approaches
is based on the point forecasts (Section 4.4.1) and one uses the
probabilistic forecast (Section 4.4.2). Both methods introduce
time-dependency in the generated scenarios based on the his-
torical forecasts and realized actual price paths.

4.4.1. Historical point forecast errors
The first method utilizes the point forecasts from the

LASSO model as the base for generated scenarios. The time-
dependency between prices in consecutive time points is intro-
duced by adding a vector of past errors of the LASSO point
model to the forecast for day d in the following way:

X̃d,h,t j = X̂d,h,t j + εd∗,h,t j ,

where X̂d,h,t j is the point forecast obtained using LASSO,
εd∗,h,t j = X̂d∗,h,t j −Xd∗,h,t j and d∗ is a randomly selected day from
the past 182 days.

4.4.2. Gaussian Copula
The second approach generates price scenarios based on the

forecasted quantiles (from the probabilistic model – LASSO
with QRA or DDNN) while the time-dependency is modeled
with the Gaussian copula, similarly to Serafin et al. (2022).
Using 91-day rolling calibration window, we estimate Σ – the
temporal correlation matrix of transformed quantile coverage
errors of probabilistic forecasts. Later, we simulate the tra-
jectories by selecting quantiles in consecutive periods that are
inter-correlated based on the estimated Σ. For the more detailed
description see Pinson et al. (2009), Gneiting et al. (2007) and
Janke and Steinke (2020).

4.5. Determining prediction bands from path forecasts
Following Serafin et al. (2022), we construct the prediction

bands from the pool of simulated trajectories in order to later
use them for the trading strategies (see Section 5). Prediction
bands, unlike a set of prediction intervals, take into consider-
ation the temporal dependency of the price forecast evolution
in consecutive time points. Each prediction band (upper or
lower) is characterized by the simultaneous coverage probabil-
ity (SCP), which is the probability that the whole price trajec-
tory lies below (for upper) or above (for lower) the band. Note
that in the strategies we use for the economic evaluation of path
forecasts, we make a decision of either selling or purchasing the
electricity and therefore, at the time of the decision, only upper
(for selling) or lower (for buying) prediction band is taken into
consideration.

More formally, the SCP for the upper prediction band BU
d,h,t j

can be written as:

P
(
Xd,h,t j ≤ BU

d,h,t j
,∀ j

)
= SCP,

while for the lower BL
d,h,t j

:

P
(
BL

d,h,t j
≤ Xd,h,t j ,∀ j

)
= SCP.

The algorithm we employ for the construction of the pre-
diction bands is similar to the one proposed by Staszewska

(2007). Since the simultaneous coverage property requires the
price paths to respect the prediction band in each time point,
the procedure comes down to rejecting the forecasted trajec-
tories containing extreme points (maximum values for upper
and minimum values for lower prediction band) from the whole
simulated sample until SCP % of trajectories remain. Then, the
prediction band is created by selecting the maximum (or min-
imum) values of the remaining paths at each consecutive time
point. For the reference see both panels of Figure 5 – light-gray
dotted lines represent rejected trajectories, dark-gray solid lines
the remaining trajectories, while the solid red line depicts the
derived prediction band.

4.6. Evaluation of path forecasts

The path forecasts in this paper are evaluated twofold: first
based on the statistical measures and later in context of the
economic measures. The statistical evaluation is the standard
literature approach for the ranking the accuracy of forecast-
ing methodologies (Hyndman and Koehler, 2006; Maciejowska
and Nowotarski, 2016; Makridakis et al., 2018). However, the
statistical evaluation might not always be straightforward. Lago
et al. (2021) note that the relative accuracy of different models
might change when we consider various error metrics and sug-
gest to report multiple well-defined error measures, suitable for
the type of data (e.g., in case of electricity prices that can have
close to 0 or even negative values, percentage errors lead to in-
correct conclusions). Therefore, in this paper we use three well-
known scoring metrics suitable for the evaluation of path fore-
casts: Energy Score, Variogram Score and Dawid-Sebastiani
Score (Scheuerer and Hamill, 2015). As Scheuerer and Hamill
points out, each of these have its shortcomings in sensitivity to
certain types of the forecast biases (see Sections 4.6.1–4.6.3).

Moreover, in practice a manager has to make one decision
– and multiple sources (error measures) might point to dif-
ferent suggested actions (Kolassa, 2020). Moreover, the op-
timal choice should be determined by the expectations of the
decision-maker (for example maximization of the profits or re-
duction of the risk). However, the statistical evaluation does not
provide the necessary information since there is no clear rela-
tion between the error measures and the expected outcome of
the decision (such as profit or VaR maximization), making it
unclear if the accuracy of better methods (with regards to the
statistical error metrics) corresponds in practice to improved fi-
nancial results.

Hence, there is a need for a more universal evaluation, ide-
ally one that addresses the aforementioned issues, for example
a market simulation that uses the forecasts as an automatic deci-
sion support system (Janczura and Wójcik, 2022; Kath and Ziel,
2018; Maciejowska et al., 2019; Serafin et al., 2022; Uniejew-
ski, 2023). In this paper, we propose a market simulation ap-
proach based on a simple trading strategy to determine whether
the best forecast in terms of the statistical measures would be
also a top performer in the context of economic evaluation from
the perspective of the power producer.
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4.6.1. Energy Score
The energy score is defined by Gneiting and Raftery (2007):

ESd,h =
1
M

M∑
i=1

∥∥∥X̃i
d,h − Xd,h

∥∥∥
2

−
1

M(M − 1)

M−1∑
i=1

M∑
l=i+1

∥∥∥X̃i
d,h − X̃l

d,h

∥∥∥
2
, (2)

where X̃i
d,h =

(
X̃i

d,h,t1
, . . . , X̃i

d,h,t10

)
is the i-th path forecast for

day d and hour h, Xd,h is the corresponding actual VWA price
path and M is the number of generated paths, see Section 4.4
for details. The energy score is a strictly proper scoring rule
and a useful tool for evaluating forecasts, including ensemble
forecasts, as it generalizes the continuous ranked probability
score (CRPS; Hersbach (2000)). However, it has been observed
that the energy score may lack sensitivity to misspecifications
in the correlations between different components (Pinson and
Girard, 2012; Pinson and Tastu, 2013).

4.6.2. Dawid-Sebastiani score
The Dawid-Sebastiani score – a multivariate scoring rule

based on the mean vector and covariance matrix of the predic-
tive distribution (Dawid and Sebastiani (1999)) – is defined by:

DSSd,h = ln
(
det
(
Sd,h
))
+KT S−1

d,hK (3)

where Kd,h =
(
Kd,h,t1 , . . . ,Kd,h,t10

)
is a vector of 10 differ-

ences, each taking the form of:

Kd,h,t j = Xd,h,t j −
1
M

M∑
i=1

X̃i
d,h,t j

and Sd,h is the covariance matrix estimated from the simulated
scenarios. This scoring rule corresponds to the logarithmic
score for multivariate Gaussian predictive distributions and re-
mains a proper scoring rule for a broader class of probability
distributions. However, Scheuerer and Hamill (2015) argue that
the score calculation is very sensitive to the small sample size,
hence it is not always a good choice for ensemble forecast eval-
uation (see e.g., Table 2 in Feldmann et al. (2015)). Note, that
in case of the forecasting exercise considered in this paper, the
ensemble size is large enough for the score to be applicable.

4.6.3. Variogram score
Lastly, we use the variogram score which has been proposed

as an alternative proper scoring rule by Scheuerer and Hamill
(2015). The variogram score of order p (VS-p) is defined by:

VSd,h =

10∑
i=1

10∑
j=1

wi, j

∣∣∣Xd,h,ti − Xd,h,t j

∣∣∣p − 1
M

M∑
l=1

∣∣∣∣X̃l
d,h,ti − X̃l

d,h,t j

∣∣∣∣p2 ,
(4)

where wi, j =
1

100 . This scoring rule has been shown to be
more discriminative in context of misspecifications in the cor-
relations structure of ensemble forecasts than two metrics de-
scribed earlier. However, the types of biases and misspecifi-
cations are unknown in the forecasting task, and different val-
ues of the p parameter yield a scoring rule that is sensitive to

different types of errors (for details see Scheuerer and Hamill
(2015)). Therefore, the optimal value is not known in advance
– we use two recommended values (p ∈ {0.5, 1}) here, and
come to a completely different conclusions between the two.
Not knowing the source of the errors, we are unable to discern
a better model using the variogram score.

5. Trading strategies

In order to evaluate the path forecasts in terms of the eco-
nomic results, we use and extend the prediction band-based
trading strategy proposed by Serafin et al. (2022). The orig-
inal approach assumes the position of energy producer that
owns intermittent renewable energy sources or manages mul-
tiple such sources own by different entities (similarly to Li and
Park (2018) or Kath et al. (2020)). It simulates a surplus of
1MWh of electricity sold in the intraday market each hour of the
day. Our first extension is assuming that the decision maker, in-
stead of excess generation, faces a deficit of 1MWh of electric-
ity which has to be covered on the short-term market for each
hour. This strategy provides a different view on the challenges
posed by the renewable generation sources – and the combina-
tion of both sides, which is the second extension we propose,
allow for a realistic evaluation of the daily operations of RES
producer.

The third trading strategy mimics the actual uncertainty of
the wind power generation (forecasted day before the delivery)
and better relates to the challenges of the day-to-day operations
faced by a RES producing company. We use the data from 4
German TSOs (see 1) that contain two wind generation fore-
casts: day ahead ŴDA

d,h and intraday Ŵ ID
d,h (see Section 2.3). We

assume that the energy producer have an installed capacity of
roughly ω = 1% (for the Transnet-BW zone) or ω = 0.1% (for
the remaining three zones) of the total wind power capacity in
the respective zone. Based on the forecasts, the decision-maker
submits offers to sell ωŴDA

d,h MWh of electricity on the day-
ahead market and then has to balance his/her position on the
intraday market based on the updated value of the generation
forecast ωŴ ID

d,h.
For each hour we compute:

∆d,h = ωŴ ID
d,h − ωŴDA

d,h . (5)∣∣∣∆d,h

∣∣∣ represents the volume that needs to be sold (∆d,h > 0)
or purchased (∆d,h < 0) during the intraday market continuous
trading.

In all cases, we assume that the impact of our trades on the
prices on the intraday market is negligible and ignore the trans-
action costs. The problem can be then summarized as finding
the optimal time to enter the market for each individual hourly
delivery period.

5.1. Naive strategies
Following Serafin et al. (2022), use three naive strategies that

are not based on any generated forecasts. In the first strategy,
Naivefirst, the market participant always enters the market dur-
ing the first period t0. The second strategy, Naivelast, involves
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taking the required position in the trading period closest to the
delivery, t10. The last (Naiveavg) strategy assumes that the total
traded volume is split into 10 evenly-sized transactions through-
out all periods t1 . . . , t10.

5.2. Prediction band-based strategies

Having the prediction band generated based on the path fore-
casts, we use it as a time-varying price level of the recom-
mended limit order (placed every 15 minutes). More precisely,
the points from the prediction band (upper or lower depend-
ing on the trade direction) correspond to the prices of the limit
orders (buy or sell) placed on the market in the consecutive 15-
minute subperiods until one of the orders is filled. If none of
the limit orders gets filled, we assume that the electricity is sold
at the last VWA price, as in the Naivelast strategy.

5.2.1. Fixed-volume sell/buy strategies
Serafin et al. (2022) introduces a novel strategy that uses pre-

diction bands generated from forecasted price paths to support
the decision-making of the company managing the renewable
energy sources. It was assumed that the producer had to sell the
excess of the electricity generation over the day-ahead bid, with
a fixed volume order of 1MWh placed on the market each hour
of each day. However, the stochastic RES generation might
force the decision-maker to purchase the electricity instead. In
this study, we address that and provide the results of not only
always selling the electricity on the intraday market, but also
always buying the same amount (since the optimal points of
entry are different for both sides of the trade, the problems are
similar, but with a different solution; see Fig. 5).

5.2.2. Realistic market simulation
This study, aside from considering separate perspectives of

both the buyer and the seller, proposes a new, realistic market
simulation, in which we assume the position of the decision-
maker in a wind power plant. Each day, the manager offers
100% of the forecasted electricity generation for each hour
of the next day (based on the day-ahead generation forecast).
However closer to the delivery, a new, more precise forecast is
available – and there will be a surplus or a shortage of elec-
tricity generated versus the day-ahead offer. Like in the fixed-
volume strategies (see Section 5.2.1), the decision-maker needs
to therefore balance it on the intraday market and the prob-
lem becomes an optimization of the time to enter the market.
The main advantage of such an approach is getting rid of the
unrealistic assumption that the balancing volume and direction
are constant across all hours – here, we implicitly consider the
correlation between the change of the wind generation forecast
(day-ahead versus closer to the delivery) and the volume and
direction of the balancing transaction. See Section 5 and Eqn.
(5) for more details.

5.2.3. Ex-ante selection of the simultaneous coverage proba-
bility

As described in 4.5, we can derive a prediction band (upper
or lower – depending on the trading direction) from a collection

of path forecasts. However, we need to first specify SCP (simul-
taneous coverage probability), and its optimal value will vary –
both in time and depending on whether we buy or sell. Fol-
lowing the methodology of Serafin et al. (2022), we leave out a
91-day long rolling calibration window to fit the optimal (most
profitable) SCP. The selection is done independently for both
the upper and the lower bands, based on the subset of hours for
which the respective band type was used for trading (upper for
selling and lower for buying). In order to confirm the validity of
our approach, we compared the results of the automatic choice
of SCP with the ex-post selected values for one of the German
zones in Figure 6 – as can be seen, the automatic approach (red
surface) yields profit very close to the optimal ex-post choices.
Therefore, the results section of this paper will concentrate on
the auto-SCP methods only.

5.3. Crystal-ball strategies

It is worth noting, that in the context of the proposed strate-
gies there is a maximum and a minimum possible profit that
can be extracted from trading activities. Therefore, we, fol-
lowing Serafin et al. (2022), introduce two additional reference
strategies: Refmax and Refmin, which always enter the market
in the subperiods guaranteeing the best and the worst execution
prices, respectively. These strategies can be treated as a baseline
for the economic evaluation of other methods and additionally
they provide a reference point. Given that the realistic mar-
ket simulation will have different volumes traded for different
zones, we can’t compare the raw profits between them. Hence,
we define the fraction of realized trading potential (FRTP) – a
metric allowing for the explicit and qualitative comparison of
the results, computed as follows.

FRTPmethod = 100% ·
Profitmethod − Refmin

Refmax − Refmin
, (6)

where Profitmethod corresponds to the sum of hourly profits of
the trading strategy using the model’s forecasts on the 200-day
test period.

6. Results

As demonstrated in the literature (Kolassa (2020)), the selec-
tion of the “best” model (based on statistical evaluation) heavily
relies on the choice of evaluation measure. Consequently, in the
subsequent section, we will present the outcomes of both statis-
tical and economic evaluation of the generated path forecasts.
This approach aims to provide a comprehensive assessment of
the forecasted data, taking into account not only statistical ac-
curacy but also its relation to the economic performance.

6.1. Statistical measures

We evaluate the quality of forecasted price paths using three
statistical measures especially suitable for this purpose: Energy
Score (Gneiting and Raftery (2007), see Section 4.6.1), vari-
ogram score (Scheuerer and Hamill (2015), see Section 4.6.3)
and Dawid-Sebastiani score ( Dawid and Sebastiani (1999),
see Section 4.6.2)). Results, calculated on the last 200 days
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Figure 5: Exemplary trading situations based on lower (left panel) and upper (right panel) prediction bands with SCP 40%, derived from the same set of simulated
trajectories. Green and red triangles mark the moments and prices of filled buy and sell orders, respectively.

Figure 6: Mesh plot of profits from the realistic trading strategy (Section 5.2.2)
for the TenneT zone, based on the trajectories from the DDNNC model. Parallel
plane represents the profit from the automated selection of SCP.

Figure 7: Profits from the fixed-volume selling strategy for different DDNN
ensemble sizes. Boxplots were created based on all possible combination of a
given number of forecasts from the pool of 5. For reference, solid lines corre-
spond to LQC and LASSO bootstrap profits.
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Figure 8: Profits from the fixed-volume selling strategy. On the left y-axis there
is a nominal profit, whereas on the right – FRTP (see Section 5.3).

of the out-of-sample period, are presented in Table 1 and di-
vided into peak (hours 8 to 19) and off-peak (remaining twelve
hours of the day) periods. It is evident that various evalua-
tion measures identify distinct top-performing models. Inter-
estingly, in over half of the test cases the simplest considered
approach (LASSO-bootstrap) exhibits the best performance –
for both peak and off-peak test periods. The DDNNC approach
outperforms its LASSO-QR-based counterpart with regards to
almost every considered measure. The good performance of
LASSO-bootstrap most probably stems from a completely dif-
ferent construction than two other models – it uses actual his-
torical price evolution directly instead of estimating the depen-
dency structure. Overall, it is difficult to ultimately pick the best
model based on the presented results, the only clear conclusion
is that DDNNC outperforms LQC. These results confirm that
statistical evaluation of forecasts might not provide universal
conclusions. In the next section, we present the results of the
economic evaluation of path forecasts using trading strategies
from Section 5.

6.2. Trading profits
Firstly, we will discuss the profits of the fixed-volume strat-

egy (to provide a comparison to the original results published
by Serafin et al. (2022)). In Figure 8 we can see the profits of a
fixed-volume strategy that exclusively involves selling electric-
ity on the market. Note, that this Figure is comparable with Fig.
10 of Serafin et al. (2022) – the Naive and LASSO-based meth-
ods are identical. The newly-proposed DDNNC model outper-
forms all remaining approaches, with the profit of the auto-SCP

strategy higher than LQC by ca. 2000 EUR. This amount trans-
lates to approximately 5 percentage point improvement over the
LQC model in context of the maximum profit achievable from
forecasting for this particular strategy. For the sake of clarity,
we omit the corresponding plot for the strategy that involves
buying electricity – in this particular case, the DDNNC also per-
forms better than other approaches with the profit higher than
LQC by ca. 1500 EUR. Interestingly, the LASSO bootstrap
performs better than LQC in this case (by almost 1000 EUR).
Note, that although the averaging of multiple DDNN proba-
bilistic forecasts is crucial in achieving such results, Figure 7
shows that even in the worst-case scenario (i.e., using only a
single realization with the lowest out-of-sample profit) in the
fixed-volume sell strategy, DDNN performs comparably to the
LQC approach.

Secondly, we will discuss the results of the novel realistic
strategy. In Table 2, we present the minimum and maximum
possible profits (Refmin and Refmax, respectively; see Section
5.3) alongside the FRTP defined in Eqn. (6), which described
the percentage of the maximum possible gain achieved by the
respective model. Note, that all Naive strategies, in general
achieve FRTP of ca. 50% – further emphasizing the viability
of the benchmarking approach (the Naive methods can be com-
pared to a coin toss). Here, the DDNNC outperforms other
methods in every case, and LASSO-based approaches trade
places for the second result. Moreover, the outperformance is
significant – DDNNC is better than the second best approach
by 1.6 to 4.4 percentage points, with FRTP ranging from 65.4%
to 67.3%.

7. Conclusions

In this paper we addressed an existing literature gap regard-
ing evaluation of the electricity price path forecasts for the Ger-
man intraday market. Firstly, we have used multiple scoring
rules for the statistical evaluation of simulated price trajecto-
ries. Secondly, we proposed an extension of the simple trad-
ing strategy of Serafin et al. (2022), as a more realistic way
for the economic assessment of ensemble forecasts. We make
an important argument, that statistical and economical evalu-
ation might lead to contrary conclusions regarding the best-
performing-model selection. Moreover, we argue that from the
practical perspective of the decision maker, the latter approach
provides a clear outlook on the performance of the proposed
models.

Additionally, we propose a novel path forecasting methodol-
ogy that uses deep distributional neural networks of Marcjasz
et al. (2023) as a replacement for the point and probabilistic
forecasting steps in the LQC approach. This machine learning
approach performs the best among the considered methods, sig-
nificantly improving upon the results of the LQC method with
regards to almost every metric.

Our results show that for the German intraday market, three
statistical evaluation metrics: energy score, Dawid-Sebastiani
score and Variogram Score were unable to discern the best
model unanimously – depending on the metric, LASSO boot-
strap approach traded the first place with DDNNC. On the other
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Table 1: The results of the statistical evaluation of trajectory forecasts. The best results in each category (metric and daytime) are marked with bold.

ES DSS VS-0.5 VS-1
peak off-peak peak off-peak peak off-peak peak off-peak

DDNNC 8.46 6.67 32.93 30.55 0.53 0.43 25.47 15.35
LQC 9.33 7.02 33.47 29.81 0.58 0.45 37.05 16.42

LASSO-bootstrap 6.21 5.17 42.20 29.71 0.50 0.42 37.72 28.04

Table 2: Profits of automated strategies for different zones. The bold results are the best in each row. The results from each model represents the FRTP (see Section
5.3)

.

Refmin [EUR] Refmax [EUR] DDNNC [%] LQC [%] LASSOb [%] Naivefirst [%] Naivelast [%] Naiveavg [%]
TenneT -2110 10685 66.9 62.3 63.8 49.9 49.7 50.2
50Hz -7824 4906 67.3 63.3 61.6 48.1 51.4 49.8

Transnet -9834 1952 65.4 62.2 63.8 49.3 50.1 49.6
Amprion -3593 200 65.6 61.2 60.5 53.6 45.4 50.7

hand, a market simulation (in both the simpler and the more
realistic form) always favored DDNNC in our testing – this
results holds both for the whole Germany and also the four
zones that we used for the evaluation. This implicates that the
DDNNC model outperforms the other approaches in the context
of easily quantifiable (and universal) economic measures.

Moreover, we further justify the attractiveness of the eco-
nomic evaluation framework of Serafin et al. (2022) and its ap-
plicability to more realistic trading simulations. It provides a
well-defined measure of the potential economic impact of fore-
cast quality improvement (as we do know the minimum and
maximum possible profits) and all naive methods are compara-
ble to a coin toss – they achieve ca. 50% of the FRTP.

Acknowledgments

This work was partially supported by the Ministry of Sci-
ence and Higher Education (MNiSW, Poland) through Di-
amond Grants No. 0009/DIA/2020/49 (to T.S.) and no.
0219/DIA/2019/48 (to G.M.) and the National Science Cen-
ter (NCN, Poland) through grant No. 2018/30/A/HS4/00444 (to
R.W.).

Author contributions

T.S., R.W. – Conceptualization; G.M., T.S. – Investigation;
G.M., T.S. – Software; R.W. – Validation; T.S. – Writing, orig-
inal draft; R.W. – Writing, review & editing.

References

Dawid, A.P., Sebastiani, P., 1999. Coherent dispersion criteria for optimal ex-
perimental design. Annals of Statistics , 65–81.

ENTSO-E, 2022. Entso-e transparency platform. https://transparency.

entsoe.eu. Accessed: 2023-02-27.
EPEX, 2023. Annual report 2022. https://www.eex.com/fileadmin/

Global/News/Group/News/20230124_EEX_Group_Annual_Volume_

Report.pdf. Date accessed: 03.08.2023.
Feldmann, K., Scheuerer, M., Thorarinsdottir, T.L., 2015. Spatial postprocess-

ing of ensemble forecasts for temperature using nonhomogeneous gaussian
regression. Monthly Weather Review 143, 955–971.

Gneiting, T., Balabdaoui, F., Raftery, A., 2007. Probabilistic forecasts, calibra-
tion and sharpness. Journal of the Royal Statistical Society B 69, 243–268.

Gneiting, T., Raftery, A., 2007. Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association 102, 359–378.

Grossi, L., Nan, F., 2019. Robust forecasting of electricity prices: Simulations,
models and the impact of renewable sources. Technological Forecasting and
Social Change 141, 305–318.

Hersbach, H., 2000. Decomposition of the continuous ranked probability score
for ensemble prediction systems. Weather and Forecasting 15, 559–570.

Hill, T., Marquez, L., O’Connor, M., Remus, W., 1994. Artificial neural net-
work models for forecasting and decision making. International Journal of
Forecasting 10, 5–15.

Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., Zareipour, H., 2020.
Energy forecasting: A review and outlook. IEEE Open Access Journal of
Power and Energy 7, 376–388.

Hyndman, R.J., Koehler, A.B., 2006. Another look at measures of forecast
accuracy. International journal of forecasting 22, 679–688.
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