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Abstract

We study the impact of the loss function used to estimate the parameters of a regression-type model on profits and risk in day-ahead
electricity trading. To provide practical insights, we consider a strategy that incorporates battery storage and includes realistic
operating costs in the calculation of revenues. Using 2021-2024 data from the German market as the testing ground, we provide
evidence that minimizing a loss function that combines absolute errors with a quadratic penalty for price spread predictions of the
opposite sign is the preferred option. Forecasts based on the introduced directional loss function repeatedly and in the majority of
cases yield trading decisions that outperform those based on predictions from models estimated using squared, absolute, percentage,
or asymmetric losses, as measured by the Sharpe ratio and profits per trade.
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1. Introduction

In a recent discussion, [Kolassa (2020) emphasized that a
“good” forecast was the one that minimized the expected value
of the loss function L(3,y). The latter (also called the scor-
ing function, cost function, error measure, Or accuracy mea-
sure; \Davydenko and Fildes, [2013 (Gneiting), |2011b; Hastie
et al., 2015; [Hyndman and Koehler, 2006)) constitutes the cost
or penalty if we predict § and y is observed. In a related context,
Gneiting| (2011a)) argued that a forecaster was able to provide
the optimal forecast only if the scoring function (or the func-
tional of the predictive distribution, such as the mean, median
or quantile) was disclosed ex-ante. This implies that the loss
function minimized in the forecast generation process should
be aligned with the error measure used in the subsequent fore-
cast evaluation. However, theory does not provide insight into
the selection of the optimal error measure in a practical setting.

Motivated by differing opinions of scholars and practition-
ers, [Koutsandreas et al.| (2022) investigated the importance of
choosing the most appropriate loss function for training a model
and then evaluating the generated forecasts. The authors con-
sidered a selection of error measures and concluded that “fore-
casting methods which provide significantly better ranks are ef-
fectively identified as accurate by all accuracy measures”. Ad-
ditionally, they argued that using different criteria for model
estimation and out-of-sample evaluation did not significantly
impact the out-of-sample accuracy. This means that “good”
forecasts, as defined by [Kolassal (2020), are able to provide a
similar level of accuracy as the sub-optimal ones.

Although insightful, the results of [Koutsandreas et al.|(2022)
concern statistical, not economic, evaluation. In practice, the
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loss function that reflects revenues and — according to |Gneiting
(2011a) — should be minimized if the forecaster is to provide
the optimal forecast may be complex and impossible (or at least
very difficult) to implement in a predictive model. In particular,
forecasts can be used in a multi-step decision-making process
that takes into account the physical constraints of a system and
the decision maker’s expectations regarding profit maximiza-
tion or risk reduction. This is a common scenario in short-term
power markets (Hong et al., 2020). Forecasts of the next day’s
prices, load, or renewable generation are used to make informed
decisions about when to buy or sell electricity and in which
market (Chitsaz et al.l 2018 [Maciejowska et al., 2021} [Marc-
jasz et al., 2023 |Uniejewski and Weron, 2021). However, this
decision-making process cannot be reduced to a simple func-
tional, such as the mean or a quantile, of the predictive distribu-
tion.

Already in the 1990s, Murphy| (1993) argued that the “good-
ness” of a forecast in a business forecasting setting should be
evaluated by its consistency, quality, and value. Consistency
is the agreement between a forecaster’s internal judgments and
actual forecasts. Although some authors adjust model-derived
results using expert knowledge (Maciejowska and Nowotarski,
2016), in general, consistency cannot be measured directly be-
cause internal judgments are private. Quality, on the other hand,
can be quantified using error metrics. Finally, value refers to the
economic and other benefits from using predictions.

Yardley and Petropoulos| (2021) emphasize that value in-
cludes not only the utility to the forecaster, but also compu-
tational (runtime, cloud computing fees, etc.) and opportu-
nity costs (i.e., the resources wasted on implementing complex
methods that decision makers ultimately do not use due to a
lack of confidence in them). They also point out that the value
of forecasts in markets of a financial nature can be evaluated
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using different trading strategies, and claim that the literature
generally reveals a disagreement between traditional error met-
rics and economic measures of performance. Therefore, [Yard-
ley and Petropoulos| (2021 question the use of statistical error
metrics to select forecasting methods.

In this study, we address this issue. We consider the
most commonly used loss functions for evaluating both point
and probabilistic forecasts, namely squared, absolute and per-
centage errors (Davydenko and Fildes, [2013; Hyndman and
Koehler} [2006), and the asymmetric pinball loss (Gneiting and
Rafteryl 2007). In addition, we introduce a custom scoring
function that severely penalizes predictions of the opposite sign,
which we call the directional loss function (DLF). We then cal-
ibrate regression-type expert models (Ziel and Weron, |2018) to
electricity prices from the German day-ahead market using the
above error measures and evaluate the forecasts in economic
terms, including the Sharpe ratio and profits. For the latter, we
extend the trading strategy proposed by Uniejewski and Weron
(2021) and later used, e.g., in Marcjasz et al.| (2023)), [Nitka and
Weron| (2023)) and |Chec et al.| (2025)), which involves the use of
a battery energy storage system (BESS), and introduce thresh-
olds that limit trading to only the most profitable opportuni-
ties. Then we examine the relationship between the choice of
the loss function used to estimate the models and the economic
value of the forecasts over a four-year test period spanning the
Covid-19 pandemic and the Russian invasion of Ukraine. Fur-
thermore, unlike other studies in the literature, we analyze how
the operating costs of BESS affect the economic evaluation of
the trading strategies.

The remainder of the paper is structured as follows. In Sec-
tion [2] we present the models, the transformation used to pre-
process regressors, loss functions and the dataset considered in
this study. In Section [3] we describe the trading strategies, in-
troduce economic measures used for the evaluation of forecasts
and elaborate on the BESS operating costs. In Section[d we de-
scribe the empirical findings and provide a detailed discussion
on the performance of the proposed methods. Finally, in Sec-
tion [5] we wrap up the results and provide directions for future
research.

2. Methodology

2.1. Expert models

We focus on forecasting the day-ahead electricity prices us-
ing autoregressive models with exogenous variables inspired
by well established literature benchmarks (Bill¢ et al., 2023
Gaillard et al., 2016} Janczura and Wo6jcik| [2022; |Maciejowska
et al., 2021; Maciejowska and Nowotarski, [2016; |Ziel and
Weron, [2018). Since the trading strategy we use for the eco-
nomic evaluation of forecasts in Section 3| requires selecting a
pair of hours with the highest price difference, we can either
(i) forecast all 24 prices and compute the implied price spreads
for each pair of hours, or (ii) directly predict the spreads, like
Abramova and Bunn| (2020)) and Maciejowska et al.|(2019). In
what follows, we consider both approaches.

Model [I] predicts the day-ahead price on day d and hour A
using the regression:

7
DAy = ZﬂpDAd—p,h +BsDAy1 +PoDA,
p=1

+ BroLan + B1iWay + B12API2,, (D

7
+B13TTFy + ZB[HISD[) + &d s
p=1

where L, and Wy, are the day-ahead load and wind generation
forecasts for day 4 and hour h, DA, and DA, , are the maxi-
mum and minimum prices from day d — 1, API2;_, and TTF;_;
are the last known daily closing prices of API2 coal and TTF
gas yearly futures contracts, and D,, are weekday dummies. See
Section for information on data sources.

Model 2] directly predicts the price spread between hours £,
and h;, using the following regression:

7
ADAd,hl,hz = ZBPADAd—PJ’H,hz +ﬁ8 (md_l - %—l)
p=1
+ BoALqp, 1y + BroAWap, iy + BAPI24>  (2)

7
+B12TTF, - + Zﬁp+l2Dp + Ed by hys
p=1

where ADAgp,p, = 0.9DAgp, — 55DAay, is the difference be-
tween day-ahead prices for hours /; and &, on day d after tak-
ing into account a 90% battery efficiency (see Section[3.1)), and
ALgp, n, and AWy, 4, are the differences of day-ahead load and
wind generation forecasts for hours 4, and /4, on day d.

Moreover, like |Ciarreta et al.| (2022), Janczural (2025) and
Uniejewski et al.|(2018)), we preprocess regressors with the area
hyperbolic sine:

asinh(z) = log (z + V2 + 1), 3)

where z = %(x —a), a and b are respectively the mean and stan-
dard deviation of x in the calibration window C, and x € {DA,
ADAgj, DAg, DA, Laj, ALgp, Wap, AWay, API24, TTF,} is
the regressor. As|Ziel and Weron| (2018)) remark, close to a the
asinh(z) transform is almost linear, while large positive and neg-
ative values are pulled towards the center in a logarithmic way.
To recover the price or price spread forecasts, we apply the hy-
perbolic sine to the generated predictions (see Narajewski and
Ziel, 2020, for a more accurate inverse transformation). Since
preprocessing the regressors improves the performance of the
proposed methods with respect to all the metrics considered,
but does not change the conclusions of the study, we decided,
for the sake of parsimony, to report only the results for models
using the asinh transformation.

2.2. Loss functions

The standard approach to estimating the parameters 8 =
(B1,B2,...) of a regression is ordinary least squares (OLS),
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Figure 1: Day-ahead prices (blue trajectory; fop), consumption forecasts (gray; middle) and wind generation forecasts (orange; bottom) from the German electricity
market in the period from 05.01.2018 to 31.12.2024. The first 1092 days (05.01.2018-31.12.2020) are the initial calibration window C; each day the window is
rolled forward by 24 hours. Three specific reference dates are marked with arrows: the first day of the hard lockdown in Germany (15.12.2020), the Russian invasion
of Ukraine (24.02.2022), and the occurrence of extremely low prices due to low demand and high RES generation (on Sunday 02.07.2023 at 3 p.m. the price reached

—500 EUR/MWh).

which minimizes the mean squared error (MSE) of the differ-
ences between the observations y, and the predictions y,:

N

B = argmin £(3,,y,) = argmin (mean(y, - $)°),  (4)
B B

where £L(-, ) is the loss function and ¢ spans the calibration win-
dow C; we are using here the simplified notation of
[and Koehler|(2006). We can obtain other model specifications —
and consequently different forecasts — by minimizing different
loss functions. In this paper, we consider the most popular loss
functions used in the literature (Davydenko and Fildes|, 2013}
[Hyndman and Koehler, 2006):

o the mean absolute error (MAE)

L1, y:) = mean(ly; — ), %)

o the symmetric mean absolute percentage error (SMAPE)

[y —

—- (6)
[yil + [94]

L($1,y;) = mean

When using the MAE, the parameter estimates are less affected
by outliers than for the standard OLS procedure. On the other
hand, the advantage of using the SMAPE as a percentage-based
measure is that it is invariant to the scale of the underlying data
values. However, despite its name, it is asymmetric in the sense
that it penalizes overpredictions more than underpredictions.
Note that the so-called relative measures
et al, 2022} [Lago et al., [2021), which normalize the MAE or
RMSE by the respective (out-of-sample) error of a naive fore-
cast, e.g., ReIMAE = MAE/MAE,,;., are not considered here.

The reason is that MAE,,;,. does not depend on B, thus the
ReIMAE yields the same B as the MAE. For the same reason,
we not consider the mean absolute scaled error (MASE) intro-
duced by Hyndman and Koehler (2006)), which normalizes the
MAE by the in-sample MAE of a naive forecast. Furthermore,
we do not report the results for the geometric mean absolute er-
ror (GMAE; Davydenko and Fildes} [2013), which replaces the
arithmetic mean with the geometric one in Eq. (3). The reason
is that the performance of the GMAE-estimated models turned
out to be almost identical (but slightly inferior) to that of the
MAE-estimated regressions.

Apart from loss functions associated with point forecasts, we
additionally consider the pinball loss (PL), an asymmetric scor-
ing function for evaluating quantile predictions
[Raftery} 2007; |[Grushka-Cockayne et al.l 2017):

LG, y0) = mean((Lyss, = )0 = $1)),

@)

where 1y is the indicator function of X and g is the quantile
level. As argues, quantile forecasts can be
considered as optimal point forecasts when dealing with differ-
ent economic costs of underprediction and overprediction. This
particular situation arises, for example, in one of the most well-
known problems in operations management — the newsvendor
problem — when there are different costs associated with hav-
ing too much inventory and having too little inventory. The PL
is also the function that is minimized in quantile regression, a
technique used to postprocess point forecasts to derive predic-
tive distributions (Lipiecki et al., [2024).

Finally, we introduce a custom scoring function that attempts
to better reflect revenues from the trading strategies, see Section
[3.1] The directional loss function (DLF) linearly penalizes price




Real price differences

1 1

3 3

5 5

7 7

E 9 E 9

b i

& 15 = 15
as] as]

17 17

19 19

21 21

23 23

Model 1 forecasts

Model 2 forecasts

200

100

-100

-200
[ ]No trading

— M = M D
— = =

Sell [hour]

e — MO I~ = M D
— = = =

N & IS
Sell [hour]

Figure 2: Real price differences (left), differences of predicted prices from Model (middle) and predicted price spreads from Model (right) on 09.12.2023.
Forecasts are obtained by minimizing the mean absolute error (MAE). Black rectangles mark the pair of hours with the highest price difference (from left to right):
(15, 20) for the actual prices which are selected by the Crystal Ball strategy, (5, 20) for Modelm and (14, 20) for Model

Figure 3: Three main loss functions considered in this study: MSE, Eq. (@),
MAE, Eq. (3), and the directional loss function (DLF), Eq. (). Note that the
DLF is used only for price spread predictions, while the other two are also used
for price forecasts themselves.

spread predictions of the same sign, but adds a quadratic cost to
predictions of the opposite sign:

L1y = mean(ly, - | + max(0,-3y;$)).  (8)

The first term is the MAE loss, see Eq. (E[), while the second
resembles the so-called hinge loss commonly used for training
classifiers in machine learning (Rosasco et al., 2004). The lat-
ter penalizes when the direction of the predicted spread differs
from the actual one, which would lead to buying electricity at
a higher price and selling it at a lower price. Note that the co-
efficient of 3 in the second term is chosen arbitrarily; for this
particular value, the DLF coincides with the MSE when the ar-
guments are 2 and —2. For a comparison of the MSE, MAE and
DLF see Figure[3]

2.3. Data

We consider a dataset from the German day-ahead mar-
ket, which includes electricity prices (DAg;), as well as day-

ahead load (ﬁd,h) and wind generation (Wd,h) forecasts, see Fig-
ure [T The latter are supplemented by the last known daily
closing prices of the yearly futures contracts of API2 coal
(API2;_») and TTF gas (TTF;-,). All data series are publicly
available and have been downloaded from ENTSO-E (https:
//transparency.entsoe.eu; electricity prices, load fore-
casts, onshore + offshore wind generation forecasts) and In-
vesting.com (https://www.investing.com/; closing prices
of coal and natural gas futures).

The data span from 5.01.2018 to 31.12.2024, covering both
the Covid-19 pandemic and the 2022 energy crisis triggered by
the Russian invasion of Ukraine. Electricity prices in this pe-
riod ranged from very low values and frequent negative spikes
(i.e., a hallmark of the German market; [Hagfors et al, 2016),
to extremely volatile and high values. This dataset provides a
unique testing ground to examine the performance of the fore-
casting methods under extreme price regimes.

2.4. Rolling window scheme

Like the majority of EPF studies, we consider a rolling
scheme in which the calibration window is shifted forward by
24 hours at the end of the day. Although some authors use ex-
panding windows (only the endpoint is shifted forward; also
called the ‘recursive scheme’) or a combination of rolling and
expanding windows (Pesaran and Pick, [2011), the latter have a
major disadvantage. That is, the two most commonly used pre-
dictive ability tests (Diebold-Mariano and Giacomini-White)
require that the calibration window does not grow in size
[acomini and Rossi, 2013)). This rules out expanding windows,
but allows for both fixed (often used for hyperparameter selec-
tion in computationally demanding machine learning models,
see|Lago et al., and rolling windows.

In our setup, we use a rolling calibration window C of
3 x 364 = 1092 days; for shorter, one- or two-year windows,
the parameter estimates of Model [2] were unstable. The first
1092 days (from 05.01.2018 to 31.12.2020, see Figure EI) of
the dataset are used to calibrate the models and obtain predic-
tions for 01.01.2021. The calibration window is then rolled for-
ward by one day (05.01.2018 — 06.01.2018 and 31.12.2020
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— 01.01.2021) and the forecasts for 02.01.2021 are calculated.
This procedure is repeated for each day in the out-of-sample
period, i.e., from 01.01.2021 to 31.12.2024.

3. Trading strategies

3.1. Threshold-based strategy for predicted price spreads

We build on the strategy introduced by [Uniejewski and
Weron| (2021) and later used, e.g., in [Marcjasz et al.| (2023),
Nitka and Weron| (2023)) and |Chec et al.| (2025), which mim-
ics the day-to-day operations of electricity market participants.
The strategy involves operating a 1.25 MW battery energy stor-
age system (BESS) and using it to perform a single charge-
discharge cycle during the day. For technical reasons, the bat-
tery cannot be discharged below 20% of the nominal capacity,
i.e., 0.25 MWh, and its efficiency of charging as well as dis-
charging is ca. 90% (= 80% for a single cycle; Sikorski et al.,
2019). The approach requires selecting a pair of hours — &;
with the lowest and h, > h; with the highest predicted price
— for buying (— charging the BESS) and then selling (— dis-
charging) the electricity in the day-ahead market, see Figure
for a sample illustration.

Compared to the strategy originally proposed by |Uniejewski
and Weron| (2021) and its later variants, here we introduce a
price difference threshold that limits trading to the most prof-
itable opportunities. Namely, after selecting the pair of hours
(h1, hp), we determine whether the expected profit from the
trading activity, based on the generated forecasts, exceeds a pre-
defined threshold:

ADAd,hl,hz >T. (9)

If the above condition is met, we place price-taker buy and sell
orders in the day-ahead market, otherwise we do not trade and
report a profit of 0 EUR for the day. Note that while Model
takes into account battery efficiency, see Section [2.1] for Model

we have to compute: @d,hl,l1z = 0.9D/ZGM2 - 0'3574[,,,“.

3.2. The Crystal Ball, Persistent and Historical strategies

The trading strategy proposed in Section [3.1/has a maximum
profit that can be achieved — it would only be possible if we
had a crystal ball that could make a perfect prediction. For the
purpose of forecast evaluation and to put the results of the con-
sidered approaches into perspective, in Section ] we report the
performance of the Crystal Ball strategy (abbreviated Crystal
in the figures):

ADAgp h, = ADAgpy py- (10)

Additionally, we include two strategies that do not rely on any
forecasts. In the Persistent strategy (abbreviated Persist in the
figures; also called ‘white noise’ strategy), we assume that the
price spread between two hours for day d is the actual value
from the previous day:

ADAgp hy = ADAG_ 1y iy - 11

In the Historical strategy (abbreviated Hist in the figures), we
set the trading hours to those that exhibited the lowest and the
highest prices on average in the calibration window C:

hy
hy

We evaluate the results of the trading strategies using three
economic measures: total profit (TP), profit per trade (PPT) and
Sharpe ratio (SR). The fotal profit for model m and threshold T
is given by:

argminy, 3’ sec DAg
argmax;, ), yecc DAap.

12)

3.3. Evaluation

TP™(T) = Zd P(T), (13)

where P7(T) is the profit (or loss) for day d from trading based
on forecasts of model m with threshold 7', and the sum ranges
over the whole test period from 01.01.2021 to 31.12.2024. Note
that m refers to a combination of the model class (Model([T]or[2]
one of the benchmarks) and the loss function.

Depending on the threshold, the total number of trading days
may vary between the models and thus the TP may favor quan-
tity over quality. Since more frequent transactions lead to
higher transaction costs, this can significantly reduce revenues.
Therefore, from a practical perspective, the profit per trade:

TP™(T)

PPT(T) = s
() #trades

(14)

where the denominator is the total number of days in which
model m traded given threshold 7, is a more important metric.
AsMaciejowska et al.|(2024) and Marcjasz et al.[(2023)) empha-
size, the PPT can be easily adjusted for transaction and BESS
operating costs. In this study, we ignore transaction costs be-
cause they would be at least an order of magnitude smaller than
BESS costs for most participants (see Section [3.4).

As a third metric, we use the Sharpe ratio (Agakishiev et al.|
2025 |[Kath and Ziell, [2018):

+ % Pm* T
SR™(T) = #trades Zd d ( ), (15)
(on

where d* marks days when trading happened and o is the stan-
dard deviation of the obtained profits.

3.4. BESS operating cost

In most studies on electricity price forecasting that examine
profits from trading, the authors do not consider the costs and
commissions involved. Only a handful take into account trans-
action or liquidity costs, mainly in the context of intraday or
continuous-time markets (Narajewski and Ziel, 2022} Kuppel-
wieser and Wozabal| 2021). However, to the best of our knowl-
edge, none have analyzed how the operating costs of BESS af-
fect the profits from intraday trading in day-ahead markets.

The methods used to calculate the cost of energy storage sys-
tems vary widely between studies. Few consider only the initial
cost of building the system, while others calculate the so-called
life-cycle cost (LCC), which includes the costs of operation and



maintenance, parts replacement, and eventual decommission-
ing. [Rahman et al.| (2020) discuss this issue in detail, pointing
out that for new technologies such as BESS, there is a high de-
gree of uncertainty in the cost estimates, mostly due to different
assumptions of the system parameters considered in the studies.

Additionally, the perspective of the company utilizing the
BESS is crucial — the cost estimate will be very different if we
compare building the BESS from scratch versus operating an
existing infrastructure. Since the exact pricing of BESS costs
is not the primary focus of this paper, for simplicity we as-
sume that the cost of operating BESS is 100 EUR per single
charge-discharge cycle. We derive this value by considering
the approximate cost of battery cells (excluding installation and
construction costs) in a utility-scale lithium-ion battery system
(NREL, 2024), at the level of 300 EUR/kWh. We scale it to
a 1MWh battery size and assume a battery lifetime of 3000
cycles (da Silva Lima et al.| [2021). According to |Cole and
Karmakar| (2023)), the cost of operating BESS is expected to
decrease rapidly over the next decade. Therefore, to comple-
ment the outlook, we additionally consider a 50 EUR charge-
discharge cycle cost when reporting the results of the economic
evaluation. Finally, to emphasize the importance of considering
the operating costs of BESS, we show how different the conclu-
sions can be if such costs are ignored.

4. Economic results

The trading frequency, total trading profits, profits per trade
and Sharpe ratios for the considered models (to be more pre-
cise: loss functions used to estimate the models) are shown in
Figures[d and[5] Due to significant changes in electricity price
dynamics during the test period, we report results separately for
each of the years 2021, 2022, 2023, and 2024. This allows us
to evaluate the performance of the models and loss functions
under different market conditions.

4.1. Trading frequency

The total number of BESS charge-discharge cycles and the
corresponding trades made for a given model and loss function
are shown in the top row of Figure[das a percentage of all pos-
sible trades, i.e., the number of days per year. As can be seen,
the PL-estimated models for high quantile levels (— dark gray
shaded areas) and the sSMAPE-estimated models (— solid and
dashed purple lines) trade most frequently. At the same time,
the MSE loss function (— solid and dashed blue lines) leads to
more frequent trading than the MAE (— solid and dashed or-
ange lines) in a ‘calm’ year 2023, while the opposite is true in a
‘volatile’ year 2022. In 2021 and 2024, both models trade sim-
ilarly frequently. The DLF-estimated models (— yellow line)
and the PL-estimated models for low quantile levels (— light
gray shaded areas) are consistently among the least frequently
trading ones, indicating that they are more discriminating in
their choice of trading opportunities than the MSE and MAE.

By construction, see Section [3.2] if the Crystal (Ball) bench-
mark (— green line) traded yesterday, then the Persist(ent) strat-
egy (— dash-dotted red line) will trade today, and the number

of trading days in a year will differ by no more than one day
for them. They both traded relatively often in 2021. In the re-
maining years, they traded frequently for high thresholds and
infrequently for low thresholds. Finally, the Hist(orical) strat-
egy (— dotted red line) traded rarely in the considered years.

4.2. Total trading profits

Looking first at the most realistic case given today’s prices
of BESS (2nd row of Figure i} note that y-axes differ between
rows and columns), we can see that in 2023-2024, and to some
extent in 2021, the less frequently trading models — the DLF
(— yellow line) and pinball loss for low quantiles (— light
gray areas), followed by the MAE (— orange lines) and MSE
(— blue lines) — were the top performers when each charge-
discharge cycle costs 100 EUR. However, in 2022, when the
energy crisis reached its climax and electricity prices soared,
the MSE-estimated price spread model (— solid blue line) led
to the highest revenues. Regarding the performance of Modell[T]
(— dashed lines) vs. Model 2] (— solid lines), for the MSE the
latter performed better, while for the MAE the evidence was
mixed — the price spread model was better in 2021-2022, but
slightly worse in 2023-2024. Similarly, for the worst perform-
ing SMAPE-estimated models (— purple lines), the evidence
was mixed.

Interestingly, with a BESS operating cost of 100 EUR per cy-
cle, trading was barely profitable in 2021 and 2023 for the best
approaches considered, and would be extremely unprofitable
without proper model and threshold selection.

Clearly, the inclusion of costs in the evaluation reveals the
need to introduce thresholds in the trading strategy. For lower
thresholds, even the best performing models generate signifi-
cant losses. With such high trading costs, traders need to con-
sider only the most profitable opportunities to generate positive
returns.

For the charge-discharge cost of 50 EUR (3rd row of Fig-
ure [) there is a trade-off between the number of trades (lower
values of T) and the profitability of the trading opportunities
(higher values of 7). Initially, the total profit increases with
the value of the threshold by including only more profitable
opportunities — up to 7 =~ 50 EUR — and then begins to de-
crease as the total number of trades begins to decrease. Like
in the top row in Figure 4| also for the twice lower operating
cost the DLF price spread model (— yellow line) yielded the
highest revenues in 2023 and 2024, followed by the MAE- and
MSE-estimated regressions; this time the pinball loss for low
quantiles (— light gray areas) performs poorly, especially for
high T’s. Similarly as for the BESS cost of 100 EUR, also in
this case the MSE-estimated price spread model (— solid blue
line) excels in 2022. In 2021 there is no clear winner, the DLF-,
MAE- and MSE-estimated regressions perform equally well for
the lowest thresholds yielding the highest revenues. Again, the
evidence is mixed when comparing Model [T| with Model

Finally, if we assume that the charge-discharge cycle has
no cost (bottom row of Figure ), the models that trade more
frequently are the top performers. In addition, trading with a
higher threshold limits the total profit in each year of the test
period. This is not surprising, since in this case trading is free
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and even the potentially less profitable opportunities increase
the total revenue.

4.3. Profits per trade

In the top row of Figure [5| we present the profit per trade for
different model classes and loss functions, independently for
each of the test period years and BESS operating cost of 100
EUR. Note that for operating costs of 50 and 0 EUR the profit
per trade will be exactly 50 and 100 EUR higher, respectively,
since changing the cost only shifts the results by a constant.
Similarly to the total profit depicted in Figure[d] years 2022 and
2024 provided the most profitable trading opportunities with an
average profit per trade of ca. 85 and 55 EUR, respectively, for
the top performing models and high values of 7. Unlike the
total profit, PPT™(T') increases with T for all of the considered
approaches.

In year 2021 the DLF- and MSE-estimated regressions per-
formed the best, closely followed by the MAE- and PL-
estimated for low quantiles. Interestingly, in 2021 the models
were able to outperform the Crystal Ball benchmark. Because
of the threshold and imperfect forecasts, the models traded less
frequently, omitting some of the less profitable situations. For
instance, for T = 50 and BESS operating cost of 100 EUR, if
the Crystal Ball forecast was 55 EUR and the model forecast
49 EUR, the model would not trade and ‘gain’ over the Crystal
Ball which effectively lost 45 EUR.

In the most profitable year 2022, the DLF, MSE and par-
ticularly the pinball loss for low quantiles outperformed all
other approaches, while the MAE performed relatively worse
compared to the previous year. Similarly to 2021, the MSE-
and MAE-estimated Model [I] (— dashed lines) performed sig-
nificantly worse than its counterpart directly predicting price
spreads (— solid lines).

In 2023 and 2024, the DLF and the pinball loss for low quan-
tiles remain the strongest performers and the MAE trades places
with the MSE as the third best approach. This time, similarly
to the total profit for the BESS cost of 100 EUR, Model[I] per-
forms slightly better than Model [2] for the MAE. For the MSE
there is no clear winner in 2023 and 2024, Model 2| outperforms
Model[T] by a slim margin.

4.4. Sharpe ratios

In the bottom row of Figure [5] we plot the Sharpe ratios for
the models and scenarios considered. Similarly to the profits
per trade, the Sharpe ratios generally increase with increas-
ing thresholds. The highest values of SR™(T") were obtained
in 2021, likely due to the much lower standard deviation of
the profits, see Eq. (I5). Here, the price spread regressions
(i.e., Model E]) estimated using DLF, MSE and MAE outper-
formed all other approaches, even — what may seem surprising
— the Crystal Ball benchmark. Alongside PL-estimated models
for low quantiles, they were again the top performers in 2022.
For the calmer year that followed, the DLF-estimated model
was the best. For 2023 and 2024, the MSE-estimated regres-
sions were outperformed by their MAE-estimated counterparts.
However, the DLF-estimated model performed even better. On

the other hand, SsMAPE-estimated regressions consistently un-
derperformed for all threshold values. Additionally, Model 2]
generated forecasts that for MSE and MAE performed better
in terms of the Sharpe ratio than the forecasts of Model [] (for
MAE only for 2021 and 2022).

5. Conclusions

In this study, we calibrated regression-type expert models to
electricity prices from the German day-ahead market using a
range of well-known loss functions (MAE, MSE, sMAPE, PL)
and a newly-introduced directional loss function (DLF). We
evaluated the forecasts in economic terms, including the Sharpe
ratio and profits (total and per trade), over an out-of-sample
test period of four years (2021-2024). We extended the trad-
ing strategy of Marcjasz et al.| (2023)) and introduced thresholds
that limit trading to only the most profitable moments. Addi-
tionally, unlike other studies, in the evaluation of the proposed
methods, we considered realistic costs associated with operat-
ing a battery energy storage system (BESS), which currently
amount to ca. 100 EUR per charge-discharge cycle.

Due to significant changes in electricity price dynamics dur-
ing the test period, we reported results separately for each
year. In 2021, the DLF-estimated models performed well in
terms of total profits and outperformed all other approaches
in terms of profits per trade and Sharpe ratios for almost all
thresholds. In the most volatile, yet most profitable year 2022,
the MSE-estimated regressions performed extremely well in
terms of total profits, producing similar profits per trade and
Sharpe ratios to DLF- and PL-estimated (for low quantiles)
models. However, in the calmer year 2023 and the moderately
volatile year 2024, again the DLF- and PL-estimated (for low
quantiles) models were the top performers. Although MSE-
estimated models outperformed their MAE-estimated counter-
parts in 2021 and 2022, the opposite could be observed in 2023
and 2024.

Overall, our results provide evidence that the newly intro-
duced directional loss function (DLF) and the pinball loss for
low quantiles exhibit the most consistent performance, being
the best-performing models in terms of profits per trade (a mea-
sure independent of the trading volume) and risk-adjusted prof-
its (as measured by the Sharpe ratio). We argue that while the
total profit is commonly used in the literature, it favors frequent
trading and could lead to misleading conclusions, especially
when the BESS operating costs are not considered. Therefore,
we recommend using profits per trade and Sharpe ratios to as-
sess the economic value of forecasts.

By examining two similarly structured regression models, we
can conclude that directly predicting price spreads between a
pair of hours, as opposed to predicting prices for each hour sep-
arately, produces forecasts that yield generally higher profits as
well as superior profits per trade and risk-adjusted profits for
the MAE and MSE loss functions, especially in an extremely
volatile price environment as observed in 2022.

In addition, we find that the introduced threshold-based strat-
egy allows us to increase the performance with respect to all
considered economic measures when BESS operating costs are
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taken into account. We recommend that these costs are not ig-
nored in the economic evaluation of forecasts, as this may lead
to a suboptimal model choice.

Our study can be further expanded in several directions.
First, more advanced and accurate forecasting models can be
considered, e.g., LASSO-estimated autoregressions or deep
neural networks (LEAR, DNN; [Lago et al.} 2021}, [Uniejewskil,
2024). Second, the proposed framework can be adapted to the
joint modeling of prices for the 24 hours of the day, e.g., us-
ing vector autoregressions (VAR; [Maciejowskal, 2022} [Ziel and|
2018), machine learning models with multiple outputs
(Lago et all [2018)) or functional autoregressions (FAR; [Chenl
2017), to minimize loss functions directly related to
trading profits. Finally, since energy commodities tend to ex-
hibit strong seasonal patterns (Lisi and Pelagatti, 2018, Ma-]
2020), seasonal decomposition could be used to im-
prove the accuracy of price and price spread forecasts

etall, 2025).
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