

WORMS/25/02
 W

O
R

ki
n

g
 p

ap
er

s
in

 M
an

ag
em

en
t

S
ci

en
ce

PostForecasts.jl: A Julia package
for probabilistic forecasting by

postprocessing point predictions

Arkadiusz Lipiecki1
Rafał Weron1

1 Faculty of Management, Wrocław University of Science
and Technology, Poland

WORMS is a joint initiative of the Management Science departments
of the Wrocław University of Science and Technology,

Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

PostForecasts.jl: A Julia package for probabilistic
forecasting by postprocessing point predictions

Arkadiusz Lipieckia,∗, Rafał Werona

aFaculty of Management, Wrocław University of Science and Technology, Poland

Abstract

Postprocessing of point predictions is a relatively simple and efficient way to com-
pute probabilistic forecasts, which are the basis of uncertainty assessment for deci-
sion support and risk management. The PostForecasts.jl package in Julia provides
types and functions to easily convert point forecasts into probabilistic ones using
Historical Simulation, Conformal Prediction, Isotonic Distributional Regression,
and variants of Quantile Regression Averaging. By leveraging the developments
in the point forecasting literature, it offers a set of easy-to-use, computationally
undemanding, and robust tools to derive predictive distributions.

Keywords: probabilistic forecasting, postprocessing, combining forecasts,
uncertainty quantification

Metadata

Nr. Code metadata description Metadata
C1 Current code version v0.1.0
C2 Permanent link to code/repository used for this code

version
https://github.com/lipiecki/

PostForecasts.jl/releases/tag/v0.1.0

C3 Permanent link to Reproducible Capsule N/A
C4 Legal Code License MIT license (MIT)
C5 Code versioning system used git
C6 Software code languages, tools, and services used Julia
C7 Compilation requirements, operating environments &

dependencies
Julia 1.10 (see Project.toml)

C8 If available Link to developer documentation/manual https://lipiecki.github.io/

PostForecasts.jl/dev/

C9 Support email for questions arkadiusz.lipiecki@pwr.edu.pl

Table 1: Code metadata (mandatory)

∗Corresponding author.
Email addresses: arkadiusz.lipiecki@pwr.edu.pl (Arkadiusz Lipiecki),

rafal.weron@pwr.edu.pl (Rafał Weron)

Forthcoming in SoftwareX May 10, 2025

https://github.com/lipiecki/PostForecasts.jl/releases/tag/v0.1.0
https://github.com/lipiecki/PostForecasts.jl/releases/tag/v0.1.0
https://lipiecki.github.io/PostForecasts.jl/dev/
https://lipiecki.github.io/PostForecasts.jl/dev/

1. Motivation and significance

Probabilistic forecasts allow decision makers to quantify risks, prepare for
different scenarios, and predict future uncertainty [1, 2]. However, implementing
and calibrating models that return probabilistic forecasts, e.g., a set of quantiles
approximating the predictive distribution or parameters of a parametric distribu-
tion, can be a complex and computationally demanding task. A viable and effi-
cient workaround is to postprocess point forecasts using methods that can output
probabilistic forecasts [3–5].

The PostForecasts.jl package in Julia has been designed to do just that. It
allows the user to choose between a number of postprocessing methods that dif-
fer in terms of computational complexity and assumptions about the underlying
distributions: a benchmark approach based on normally distributed errors, His-
torical Simulation (HS) [6–8], Conformal Prediction (CP) [9, 10], four variants
of an established postprocessing scheme in energy forecasting – Quantile Regres-
sion Averaging (QRA) [5, 11–14] and a novel Isotonic Distributional Regression
(IDR)[15–17]. In addition, the package offers a choice of combination and con-
formalization schemes to further improve the probabilistic forecast, and accuracy
metrics to evaluate it.

The package relies on deterministic models for reliable and repeatable results,
does not require hyperparameter tuning, and leverages forecaster diversity via av-
eraging. We believe that following these principles allowed us to develop a robust
tool for computing probabilistic forecasts that combines ease of use, high accu-
racy, low computational costs and good interpretability of the results. This makes
PostForecasts.jl an attractive choice for both academic and industrial applications.

The remainder of the paper is structured as follows. In Section 2 we first
describe the software architecture and introduce the implemented postprocess-
ing methods. Next, we review additional software functionalities, like forecast
averaging, conformalization of quantile forecasts, assessing forecaster contribu-
tions using Shapley values, evaluation metrics, and the sample datasets shipped
with PostForecasts.jl. In Section 3 we provide snippets illustrating the main func-
tionality of the package. Finally, in Section 4 we elaborate on the impact and
conclude.

2. Software description

The core functionality of PostForecasts.jl is deriving probabilistic forecasts
(→ QuantForecasts objects; see Sec. 2.1) from point predictions (→ PointFore-
casts objects) with a single call of the point2quant() function. The latter utilizes
the information contained in pairs (ŷt, yt), where ŷt = {ŷt,1, ..., ŷt,m} is a vector of
out-of-sample point predictions of yt from m ≥ 1 forecasters, and returns target

2

Figure 1: Structures, functions and workflow of the PostForecasts.jl package.

quantiles using a selected postprocessing method, training window length, and
retraining frequency. The structures, functions and workflow of the package are
illustrated in Figure 1.

2.1. Software architecture
To make forecast processing easy and unify the workflow, the package uses

two types belonging to Forecasts supertype. PointForecasts stores the series of
point forecasts along with observations and identifiers (integer labels, e.g., dates
in the YYYYMMDD format). Multiple forecasts of the same target variable can
be stored in a single PointForecasts object, allowing for multiple postprocessing,
i.e., estimating predictive distributions conditional on a pool of point forecasts.

The QuantForecasts structure holds the series of probabilistic forecasts and the
observed values. Predictive distributions are stored as a set of quantiles of spec-
ified probabilities. Analogously to PointForecasts, QuantForecasts also stores
identifiers. Both types are provided with position-based and label-based index-
ing and slicing.

The package repository github.com/lipiecki/PostForecasts.jl is setup with a
GitHub Actions workflow that automatically runs tests on every push and pull
request. Testing is performed on the latest stable release of Julia on Ubuntu, Win-
dows and MacOS platforms. At the time of submission, we can report a 100%
test coverage, tracked by Codecov (https://about.codecov.io/). PostForecasts.jl is
registered in the General Julia package registry, so it can be easily installed with:

1 using Pkg

3

https://github.com/lipiecki/PostForecasts.jl
https://about.codecov.io/

2 Pkg.add("PostForecasts")

2.2. Implemented postprocessing methods
The point2quant() function converts point predictions stored in the PointFore-

casts structure into target quantiles and saves them in the QuantForecasts struc-
ture, see Figure 1. Postprocessing is performed with one of the implemented meth-
ods, described in Sections 2.2.1-2.2.4. Computations for each method are per-
formed with specialized objects belonging to the PostModel abstract type. Meth-
ods that generate predictive distributions conditional on a single input are of the
UniPostModel supertype, while these allowing for processing multiple inputs be-
long to MultiPostModel supertype. If a UniPostModel is used for postprocessing
a pool of point forecasts, the pool average ỹt will be treated as input:

ỹt =
1
m

m∑
i=1

ŷt,i, (1)

where ŷt,i is the prediction for time time t from forecaster i and yt is the observed
value at time t. Apart from using implemented models via point2quant() function,
it is also to use them directly on arrays of data with train() and predict() methods.
See Section 3 for example usage of point2quant() and Table 2 for a cheatsheet of
available methods.

Table 2: Summary of the types of methods implemented, providing their supertypes indicating
whether the method supports multiple (→MultiPostModel) or only single input (→UniPostModel)
postprocessing, and respective keyword arguments for the point2quant() function.

Method Quantile
Regression

Isotonic
Distributional

Regression

Normal
Distribution

Conformal
Prediction

Historical
Simulation

Type QR IDR Normal CP
Supertype MultiPostModel UniPostModel

Keyword :qr :idr
:normal

:zeronormal :cp :hs

2.2.1. The ’normal’ benchmark
This benchmark model assumes that the prediction errors εt = yt − ỹt are

normally distributed. Training corresponds to estimating the sample mean µ̂ (the
package allows setting a fixed mean µ̂ = 0) and the sample standard deviation σ̂ of

4

εt for t ∈ S, where S is the training set (or window). The τ-th quantile conditional
on ỹt is obtained via:

q̂τ|ŷt = ỹt + µ̂ + σ̂F−1
N (τ), (2)

where F−1
N (τ) is the inverse of the standard normal cumulative distribution func-

tion. Call point2quant() with the keyword argument method=:normal to use a
normal model that estimates both the standard deviation and the mean, or with
method=:zeronormal to fix the mean at 0.

2.2.2. Historical Simulation and Conformal Prediction
Historical Simulation (HS) [7, 8] is a very simple model-independent approach

that computes a prediction of the τ-quantile of variable yt as a sum of the point
forecast ỹt and a sample τ-quantile Qτ(εt) of the prediction errors εt = yt − ỹt for
t ∈ S:

q̂τ|ỹt = ỹt + Qτ(εt). (3)

Although the method itself is much older, the term ‘historical simulation’ can be
traced back to the early 1990s and the beginnings of Value-at-Risk (VaR) in risk
management practice [6]. Interestingly, by 2005, nearly 75% of the banks were
still using HS instead of the more advanced VaR methods that had been developed
in the meantime [7].

The related concept of Conformal Prediction (CP) originated in the machine
learning literature [18]. Like HS, it computes PIs based on the prediction errors
from an arbitrary point forecasting model. The implemented version corresponds
to the inductive conformal prediction (ICP) [10, 19]. Although Zaffran et al. [20]
argue that the split conformal prediction (SCP) corresponds to the ICP, we would
like to emphasize that the approach we adopt does not use a ‘split’ and hence
differs from what is commonly understood by SCP. Since we are only interested
in postprocessing point forecasts from an already trained model, we do not need
to split the data. Therefore, the calibration of conformal prediction in PostFore-
casts.jl is performed directly on the provided out-of-sample point forecasts.

In the training step, the so-called non-conformity scores of the form: λt =

|εt| = |yt − ỹt| are calculated for t ∈ S; see [21] for alternative non-conformity
measures and [18] for a general discussion. In the prediction step, the τ-th quan-
tile conditional on ỹt is obtained by shifting the point forecast by an appropriate
empirical quantile of the non-conformity score:

q̂τ|ỹt = ỹt − 1τ≤0.5Q2τ(λ) + 1τ≥0.5Q2(1−τ)(λ), (4)

where Qτ(λ) is the τ-th sample quantile of λt. While [ỹt − Qτ(λ), ỹt + Qτ(λ)] is a
valid (1−τ)-prediction interval without any requirements on the underlying distri-
bution, extracting quantiles from this PI requires the assumption of symmetrically

5

distributed errors. This is in contrast to the HS which admits non-symmetric PIs
around the point forecast.

Note that Historical Simulation can be considered as a variant of Conformal
Prediction, which uses non-absolute forecast errors as the non-conformity score:
λt = εt = yt−ỹt. For this reason, both methods use the same underlying model type
CP. Call point2quant() with the keyword argument method=:cp to use conformal
prediction or method=:hs for historical simulation. Moreover, PostForecasts.jl
offers conformalization of quantile forecasts through the conformalize() function,
see Appendix A.

2.2.3. Isotonic Distributional Regression
Isotonic Distributional Regression (IDR) has been introduced by Henzi et al.

[15] as a nonparametric method for estimating distributions that are isotonic in
the regressed variable. The latter means that the quantiles of such distributions
are nondecreasing with respect to the regressor. Note that unlike the methods
discussed in Sections 2.2.1 and 2.2.2, IDR works with individual forecasters ŷt ∈

{ŷt,1, ..., ŷt,m}, not their average ỹt.
In the training step, all pairs (ŷt, yt) are sorted to be ascending in ŷt for all t ∈ S;

we denote this set by (ŷ↑i , y
↑

i)n
i=1. Then, the conditional distributions F̂i(z) = F̂(z|ŷ↑i)

are obtained by solving the following min-max problem via the abridged pool-
adjacent-violators algorithm [16]:

F̂i(z) = min
k=1,...,i

max
j=k,..,n

1
j − k + 1

j∑
l=k

1{y↑l < z}, (5)

where z ∈ (y↑i)n
i=1, and the conditional distribution for any ŷ ∈ R is obtained by

interpolation. For a schematic representation of the IDR algorithm and a detailed
discussion, see Figure 2 and Section 4.3 in [5].

Finally, since QuantForecasts stores predictive distributions in the form of
quantiles, we determine IDR-implied quantiles at specified levels as:

q̂τ|ŷ = min{z : F̂(z|ŷ) ≥ τ}. (6)

The multiple IDR approach is implemented as a linear pool of independent IDR
solutions estimated for each of the input point forecast series. In such a case, mul-
tiple IDR models are estimated and the resulting distribution functions F̂(z) are
averaged. Since z is limited to the observations in S, the distributions resulting
from estimated IDRs are defined at the exact same points, which allows to effi-
ciently compute their vertical average across probabilities by directly calculating
Eq. (8). To use IDR in point2quant(), set method=:idr.

6

2.2.4. Quantile Regression Averaging
Quantile Regression Averaging (QRA) is a well-established postprocessing

method introduced by Nowotarski and Weron [11] that has found numerous appli-
cations in energy forecasting [8, 12–14, 22–27]. It computes conditional quantiles
from a linear combination of the m ≥ 1 forecasters:

q̂τ|ŷt,1,...,ŷt,m = β0 + β1ŷt,1 + ... + βmŷt,m. (7)

QRA is the most computationally demanding method of the ones implemented,
since βi’s are estimated using quantile regression [28], which minimizes the so-
called pinball loss, see Section 2.3.2, for each quantile τ. For this task, Post-
Forecasts.jl employs JuMP.jl with an open source HiGHS solver. Apart from the
original QRA method [11], the package allows us to compute the Quantile Re-
gression Machine (QRM) [25, 29] and quantile regression with vertical (called
F-Ave or QRF) or horizontal (called Q-Ave or QRQ) averaging [30, 31]. For an
illustrative example see Appendix C.2. Call point2quant() with method=:qr to
postprocess forecasts with quantile regression.

2.3. Additional software functionalities
2.3.1. Forecast averaging

Since combining forecasts is known to improve predictive accuracy [32], Post-
Forecasts.jl provides forecast averaging functionality for both point and proba-
bilistic predictions. For averaging distributions represented by sets of quantiles in
the QuantForecasts structure, two schemes are implemented [5, 30, 33]:

• vertical averaging of probabilities→ function paverage(),

• horizontal averaging of quantiles→ function qaverage(),

see the graphical illustration in Figure 1. Ensembles of point forecasts can be
averaged using the mean or the median→ function average().

Averaging of probabilities. Vertical averaging of m distributionsis defined by:

F̃(z) =
1
m

m∑
i=1

F̂i(z). (8)

Since QuantForecasts store predictive distributions in the form of tabulated quan-
tile functions, paverage() computes the vertical average of input distributions in
the following steps:

1. Take m input distributions q̂(i)
τi , where i ∈ {1, ...,m}, τi ∈ Ti, and Ti are

quantile levels of i-th distribution.

7

2. Calculate F̃(z) for z ∈ {q̂(i)
τi : τi ∈ Ti, i ∈ {1, ...,m}} according to

F̃z =
1
m

m∑
i=1

max{τi : q̂(i)
τi
≤ z},

where we implicitly extend each distribution i with quantile predictions
q̂(i)

0 = −∞ and q̂(i)
1 = +∞.

3. Quantiles of the averaged predictive distribution are then obtained as:

q̃τ = min{z : F̃(z) ≥ τ}.

Averaging of quantiles. Horizontal averaging of m distributions is a simple aver-
age of the quantile forecasts at corresponding probabilities τ:

q̃τ =
1
m

m∑
i=1

q̂(i)
τ , (9)

which is exactly what the qaverage() functions does. Note that, in contrast to
paverage(), it requires the input distributions to be tabulated at the same quantile
levels.

2.3.2. Forecast evaluation
To assess the accuracy of both point and probabilistic forecasts, the Post-

Forecasts.jl package offers popular evaluation metrics for the PointForecasts and
QuantForecasts objects. For point forecasts they include well-known statistical
error measures [34, 35]:

• mae() – mean absolute error: MAE = 1
n

∑n
t=1 |εt|,

• mape() – mean absolute percentage error: MAPE = 100
n

∑n
t=1
|εt |
|yt |

,

• smape() – symmetric MAPE: sMAPE = 200
n

∑n
t=1

|εt |
|ŷt |+|yt |

,

• mse() – mean squared error: MSE = 1
n

∑n
t=1 ε

2
t ,

where εt = yt − ŷt. For probabilistic forecasts, the package offers three metrics:

• coverage() – unconditional coverage: UC = 1
n

∑n
t=1 1{yt≤q̂τ,t}, to evaluate the

reliability (also called calibration or unbiasedness) [8, 36]; in the case of
quantiles this corresponds to the number of observations not exceeding the
quantile forecast, i.e., the closer the UC is to the nominal coverage, the more
reliable are the forecasts;

8

• pinball() – pinball loss: PL(τ) = 1
n

∑n
t=1

{
(1q̂τ,t≥yt − τ)(q̂τ,t − yt)

}
, to assess

both reliability and sharpness [5, 37]; the PL is a strictly proper scoring
rule for quantiles, i.e., it is minimized when the quantile predictions are
identical to the true quantiles, hence encouraging honest forecasting [38];

• crps() – continuous ranked probability score: CRPS ≈ 2
k

∑k
i=1 PL

(
i

k+1

)
,

where k is the number of quantile predictions, corresponding to equidistant
probability levels spanning the interval

[
1

k+1 ,
k

k+1

]
, which is a single metric

that evaluates the entire predictive distribution [1, 5, 39]; while the PL is
a strictly proper scoring rule for individual quantiles, the CRPS is strictly
proper for entire distributions.

In all of the above formulas, n corresponds to the number of predicted time steps,
i.e., the length of the test period). For an illustrative example of using the CRPS
to evaluate probabilistic forecasts see the snippet in Section Appendix C.1. To
quantify the contributions of different forecasters to the predictions obtained by
forecast averaging, PostForecasts.jl provides methods based on the concept of
Shapley values, see Appendix B.

2.3.3. Sample datasets
The PostForecasts.jl package ships with two datasets. The first, called EPEX,

is of hourly frequency and comprises five years (2019-2023) of wholesale elec-
tricity prices in Germany, as well as the corresponding day-ahead point fore-
casts computed by Lipiecki et al. [5] using a LASSO-Estimated AutoRegressive
(LEAR) model [35, 40]. The regressors include historical prices of electricity
(various lags), day-ahead predictions of the system-wide load and day-ahead pre-
dictions of wind and solar generation. The parameters are estimated separately
for each of the 4 training window lengths, i.e., 56, 84, 1092 and 1456 most re-
cent days, and employ cross-validation for selecting a regularization penalty, as
discussed in [5]. For example, calling loaddata(:epex20), loads the observations
and forecasts of EPEX prices for the 20th trading hour of the day-ahead market
(19:00).

The second dataset, called PANGU, contains forecasts from the PANGU weather
model trained on 39 years of ERA5 reanalysis data [41]. The data spans five
years (2018-2022) of forecasts of the following weather variables for the city of
Wrocław, Poland: U10 (u-component of wind speed at 10m), V10 (v-component
of wind speed at 10m), T2M (temperature at 2m), T850 (temperature at 850 hPa),
Z500 (geopotential height at 500 hPa). The dataset is partitioned into 32 files,
which correspond to different forecasting horizons (up to 186 hours ahead, with
a 6-hour resolution, initialized each day at midnight). For example, calling load-
data(:pangu24t850) loads the observations and forecasts of temperature at 850
hPa with a lead time of 24 hours.

9

3. Illustrative examples

3.1. Loading and postprocessing point forecasts
In the first example we show how to load point forecasts from a delimited file

and postprocess them using a selected model inPostForecasts.jl. Assume that the
file named myforecasts.csv has the following structure:

1 time real predA predB

2 1 110.8 118.7 116.0

3 2 18.0 114.1 109.2

4 3 71.9 82.7 75.0

5 ...

To load and postprocess it we only need two function calls:
1 using PostForecasts

2 pf = loaddlm("myforecasts.csv", delim=’\t’, idcol=1, obscol

=2, predcol = [3, 4], colnames=true)

3 qf = point2quant(pf, method =:qr , window =100, quantiles =[0.5,

0.9])

First, we read the file with the loaddlm() function, which arguments specify that
the file is tab delimited, the identifiers are stored in the first column, the observa-
tions in the second, and the predictions in the third and fourth. The last argument
informs that the column names are present in the file, so the first row is not parsed
into numeric values. Next, the point2quant() function postprocesses the forecasts
stored in pf, computes quantile predictions and returns a QuantForecasts object,
saved to qf. In the above snippet, the arguments of point2quant() specify that
Quantile Regression Averaging (QRA; for other variants see Section Appendix
C.2) is used for postprocessing, the length of the calibration window is 100 data
points, and that we want to predict the median and the 90th percentile. By default,
the postprocessing model is retrained before every prediction using a calibration
window of most recent data points. For details on alternative configurations, see
the documentation of the point2quant() function.

3.2. Probabilistic forecasts as a decision support tool
Consider an energy company that owns a battery and trades in the day-ahead

market. Every morning it faces the decision about whether to submit a buy order
to charge the battery and a sell order to discharge it at a later hour of the next day,
or avoid trading due to adverse market conditions. In this example, we show how
probabilistic forecasts can help us identify risky market conditions and prevent
losses.

10

Figure 2: Median price forecasts (solid lines), prediction intervals (shaded areas) and observed
prices (dots) for 3am (blue) and 7pm (red) during two sample weeks in April 2023. The lighter the
color of the shaded area, the higher the confidence level of the corresponding prediction interval:
20% (→ dark blue/red), 40%, 60% and 80% (→ light blue/red).

For simplicity, we focus on two weeks in April 2023 and assume that buy
orders are submitted for 3:00 while sell orders for 19:00. In the code snippet
below we show how to postprocess point predictions from the EPEX dataset to
obtain decile forecasts using the IDR (supporting code with plotting functions is
presented in Appendix C.4).

1 using PostForecasts

2 """

3 function plot_trades(qfbuy , qfsell) ...

4 """

5 pfbuy = loaddata(Symbol (:epex , 4)) # forecasts for 3:00

6 pfsell = loaddata(Symbol (:epex , 20)) # forecasts for 19:00

7

8 # postprocessing point forecasts

9 qfbuy = point2quant(pfbuy , method =:idr , window =182, quantiles

=9, start =20230408 , stop =20230421)

10 qfsell = point2quant(pfsell , method =:idr , window =182,

quantiles =9, start =20230408 , stop =20230421)

11

12 plot_trades(qfbuy , qfsell) # plot intervals and observations

From the decile forecasts we can construct four prediction intervals (PI) cen-
tered around the median, i.e., the 5th decile, with confidence levels of 20%, 40%,

11

60% and 80%. For example, the 20%-PI is obtained by taking the 4th and the 6th
deciles, while the 80%-PI by taking the 1st and the 9th. To visualize the results,
we can plot the median price forecasts, the PIs and the observed prices for 3am
and 7pm, Figure 2 presents the output of the plot trades() function.

Clearly, on the third day the upper quantiles of prices for 3am significantly
overlap the lower quantiles of prices for 7pm. This indicates that the buy price is
quite likely to be higher than the sell price, so the trading strategy carries substan-
tial risk. Indeed, the actual price at 7pm (→ red dot) was lower than at 3am (→
blue dot) for that day, so trading would lead to incurring a loss.

4. Impact and conclusions

Sometimes called the successor to Python, Julia stands out as a highly effi-
cient tool for data science [42]. According to the recently released Programming
Language Benchmark v2 (github.com/attractivechaos/plb2), it is up to two orders
of magnitude faster than CPython (the reference implementation of Python) and
about two to four times faster than PyPy (pypy.org). However, its ecosystem is
much smaller and requires development before it reaches the level of Python. The
PostForecasts.jl package fills this gap and offers a set of easy-to-use, versatile and
robust computational tools to derive predictive distributions from point forecasts.
To our knowledge, it is the first package in Julia to provide this functionality and
such a wide range of general-purpose postprocessing methods, and probably the
first open source package that allows to exploit the benefits of combining CP, IDR
and QRA. For instance, PPNN in Python and ensemblepp in R are focused on
postprocessing of ensemble weather forecasts. On the other hand, ConformalPre-
diction.jl in Julia and Nixtla’s products in Python only provide CP-based postpro-
cessing, ProbCast (R) and ReModels (Python) only QRA-based, while EasyUQ
framework (Python) is based on IDR. However, as Lipiecki et al. [5] show, intro-
ducing diversity by combining IDR-generated predictive distributions with those
of generally better performing CP and QRA significantly improves the forecast
accuracy.

At the same time, the PostForecasts.jl package addresses another gap. By
leveraging the developments in the point forecasting literature, it provides deci-
sion makers with much-needed tools to quantify risks, prepare for different sce-
narios, and predict future uncertainty [3, 43, 44], without the need to develop
complex models that directly output predictive distributions. This is crucial since
probabilistic forecasts not only are preferred by professionals – 93% participants
of a wind power trading simulation opted for a probabilistic forecast, but their
use also yields higher revenues – by 20% when comparing the medians of both
groups in the same study [45]. Revenue increases of up to 20% were also re-
ported for agents trading in day-ahead electricity markets that base their decisions

12

https://github.com/attractivechaos/plb2
https://pypy.org/
https://github.com/slerch/ppnn
https://cran.r-project.org/web/packages/ensemblepp
https://github.com/JuliaTrustworthyAI/ConformalPrediction.jl
https://github.com/JuliaTrustworthyAI/ConformalPrediction.jl
https://nixtlaverse.nixtla.io/
https://github.com/jbrowell/ProbCast
https://github.com/zakrzewow/remodels
https://github.com/evwalz/easyuq

on probabilistic rather than point predictions [46, 47]. With probability forecasts
increasingly being communicated to the public [2], e.g., ABC News FiveThir-
tyEight.com routinely reports them on issues related to politics, sports, health or
economics, the package may turn out to be useful not only to professionals, but to
all wanting to convey reliable information about future uncertainty.

On the research side, the methods implemented in PostForecasts.jl have al-
ready proven useful. As Lipiecki et al. [5] report, the performance of the com-
bination of probabilistic forecasts generated by CP, IDR, and QRA (see Section
2.2) was superior to that of state-of-the-art Distributional Deep Neural Networks
(DDNN) [47] over two 4.5-year test periods from the German and Spanish elec-
tricity markets. At the same time, it was twice faster to compute than the DDNN-
JSU model, and ca. 100-200 times faster than a single run of the hyperparameter
optimization routine for the DDNN model in Python. This shows that the devel-
oped package can be a powerful tool in various time series applications. It also
demonstrates that the strength comes from the combination of different postpro-
cessing schemes, a feature missing in other open access packages.

Acknowledgements

The study was partially supported by the National Science Center (NCN,
Poland) through grant no. 2018/30/A/HS4/00444. We also thank Sebastian Lerch
for preparing the PANGU dataset and Bartosz Uniejewski for generating LEAR
forecasts for the EPEX dataset.

References

[1] T. Gneiting, M. Katzfuss, Probabilistic forecasting, Annual Review of Statistics and
Its Application 1 (2014) 125–151.

[2] R. L. Winkler, Y. Grushka-Cockayne, K. C. Lichtendahl, V. R. R. Jose, Probability
forecasts and their combination: A research perspective, Decision Analysis 16 (4)
(2019) 239–260.

[3] S. Vannitsem, D. S. Wilks, J. W. Messner (Eds.), Statistical Postprocessing of En-
semble Forecasts, Elsevier, Amsterdam, NL, 2018.

[4] J. Chen, T. Janke, F. Steinke, S. Lerch, Generative machine learning methods for
multivariate ensemble postprocessing, Annals of Applied Statistics 18 (1) (2024)
159–183.

[5] A. Lipiecki, B. Uniejewski, R. Weron, Postprocessing of point predictions for prob-
abilistic forecasting of day-ahead electricity prices: The benefits of using isotonic
distributional regression, Energy Economics 139 (2024) 107934.

13

https://projects.fivethirtyeight.com
https://projects.fivethirtyeight.com

[6] D. Hendricks, Evaluation of Value-at-Risk models using historical data, Economic
Policy Review 2 (1) (1996) 39–69.

[7] C. Alexander, Market Risk Analysis IV: Value at Risk Models, Wiley, 2008.

[8] J. Nowotarski, R. Weron, Recent advances in electricity price forecasting: A re-
view of probabilistic forecasting, Renewable and Sustainable Energy Reviews 81 (1)
(2018) 1548–1568.

[9] G. Shafer, V. Vovk, A tutorial on conformal prediction, Journal of Machine Learning
Research 9 (2008) 371–421.

[10] C. Kath, F. Ziel, Conformal prediction interval estimation and applications to day-
ahead and intraday power markets, International Journal of Forecasting 37 (2) (2021)
777–799.

[11] J. Nowotarski, R. Weron, Computing electricity spot price prediction intervals using
quantile regression and forecast averaging, Computational Statistics 30 (3) (2015)
791–803.

[12] B. Liu, J. Nowotarski, T. Hong, R. Weron, Probabilistic load forecasting via Quantile
Regression Averaging on sister forecasts, IEEE Transactions on Smart Grid 8 (2)
(2017) 730–737.

[13] K. Maciejowska, T. Serafin, B. Uniejewski, Probabilistic forecasting with a hybrid
Factor-QRA approach: Application to electricity trading, Electric Power Systems
Research 234 (2024) 110541.

[14] G. Zakrzewski, K. Skonieczka, M. Małkiński, J. Mańdziuk, ReModels: Quantile
Regression Averaging models, SoftwareX 28 (2024) 101905.

[15] A. Henzi, J. F. Ziegel, T. Gneiting, Isotonic distributional regression, Journal of the
Royal Statistical Society. Series B: Statistical Methodology 83 (5) (2021) 963–993.

[16] A. Henzi, A. Mösching, L. Dümbgen, Accelerating the pool-adjacent-violators algo-
rithm for isotonic distributional regression, Methodology and Computing in Applied
Probability 24 (4) (2022) 2633–2645.

[17] E.-M. Walz, A. Henzi, J. Ziegel, T. Gneiting, Easy uncertainty quantification
(EasyUQ): Generating predictive distributions from single-valued model output,
SIAM Review 66 (1) (2024) 91–122.

[18] V. Vovk, A. Gammerman, G. Shafer, Algorithmic learning in a random world,
Springer Science & Business Media, 2005.

[19] H. Papadopoulos, K. Proedrou, V. Vovk, A. Gammerman, Inductive confidence ma-
chines for regression, Lecture Notes in Computer Science 2430 (2002) 345–356.

14

[20] M. Zaffran, O. Féron, Y. Goude, J. Josse, A. Dieuleveut, Adaptive conformal predic-
tions for time series, Proceedings of Machine Learning Research 162 (2022) 25834–
25866.

[21] Y. Kato, D. M. Tax, M. Loog, A review of nonconformity measures for conformal
prediction in regression, Proceedings of Machine Learning Research 204 (2023)
369–383.

[22] R. Weron, Electricity price forecasting: A review of the state-of-the-art with a look
into the future, International Journal of Forecasting 30 (4) (2014) 1030–1081.

[23] K. Maciejowska, J. Nowotarski, A hybrid model for GEFCom2014 probabilis-
tic electricity price forecasting, International Journal of Forecasting 32 (3) (2016)
1051–1056.

[24] Y. Wang, N. Zhang, Y. Tan, T. Hong, D. Kirschen, C. Kang, Combining probabilistic
load forecasts, IEEE Transactions on Smart Grid 10 (4) (2019) 3664–3674.

[25] B. Uniejewski, Enhancing accuracy of probabilistic electricity price forecasting:
A comparative study of novel quantile regression averaging generalization, in:
19th International Conference on the European Energy Market (EEM), 2023, doi:
10.1109/EEM58374.2023.10161748.

[26] D. Yang, G. Yang, B. Liu, Combining quantiles of calibrated solar forecasts from
ensemble numerical weather prediction, Renewable Energy 215 (2023) 118993.

[27] C. Cornell, N. T. Dinh, S. A. Pourmousavi, A probabilistic forecast methodology for
volatile electricity prices in the Australian National Electricity Market, International
Journal of Forecasting 40 (4) (2024) 1421–1437.

[28] R. Koenker, Quantile regression: 40 years on, Annual Review of Economics 9
(2017) 155–176.

[29] G. Marcjasz, B. Uniejewski, R. Weron, Probabilistic electricity price forecasting
with NARX networks: Combine point or probabilistic forecasts?, International Jour-
nal of Forecasting 36 (2) (2020) 466–479.

[30] B. Uniejewski, G. Marcjasz, R. Weron, On the importance of the long-term sea-
sonal component in day-ahead electricity price forecasting: Part II – Probabilistic
forecasting, Energy Economics 79 (2019) 171–182.

[31] B. Uniejewski, Smoothing quantile regression averaging: A new approach to prob-
abilistic forecasting of electricity prices (2023). arXiv:2302.00411.

[32] X. Wang, R. J. Hyndman, F. Li, Y. Kang, Forecast combinations: An over 50-year
review, International Journal of Forecasting 39 (4) (2023) 1518–1547.

15

http://arxiv.org/abs/2302.00411

[33] K. C. Lichtendahl, Y. Grushka-Cockayne, R. L. Winkler, Is it better to average prob-
abilities or quantiles?, Management Science 59 (7) (2013) 1594–1611.

[34] R. Hyndman, A. Koehler, Another look at measures of forecast accuracy, Interna-
tional Journal of Forecasting 22 (4) (2006) 679–688.

[35] J. Lago, G. Marcjasz, B. De Schutter, R. Weron, Forecasting day-ahead electricity
prices: A review of state-of-the-art algorithms, best practices and an open-access
benchmark, Applied Energy 293 (2021) 116983.

[36] P. H. Kupiec, Techniques for verifying the accuracy of risk measurement models,
The Journal of Derivatives 3 (2) (1995) 73–84.

[37] T. Gneiting, D. Wolffram, J. Resin, K. Kraus, J. Bracher, T. Dimitriadis, V. Ha-
genmeyer, A. I. Jordan, S. Lerch, K. Phipps, M. Schienle, Model diagnostics and
forecast evaluation for quantiles, Annual Review of Statistics and Its Application 10
(2023) 597–621.

[38] T. Gneiting, A. Raftery, Strictly proper scoring rules, prediction, and estimation,
Journal of the American Statistical Association 102 (477) (2007) 359–378.

[39] J. Berrisch, F. Ziel, CRPS learning, Journal of Econometrics 237 (2) (2023) 105221.

[40] B. Uniejewski, Regularization for electricity price forecasting, Operations Research
and Decisions 34 (3) (2024) 267–286.

[41] C. Bülte, N. Horat, J. Quinting, S. Lerch, Uncertainty quantification for data-driven
weather models, Artificial Intelligence for the Earth Systems (2025).

[42] B. Kamiński, Julia for Data Analysis, Manning Publications, 2022.

[43] K. Maciejowska, Portfolio management of a small RES utility with a structural vec-
tor autoregressive model of electricity markets in Germany, Operations Research
and Decisions 32 (4) (2022) 75–90.

[44] T. Gneiting, S. Lerch, B. Schulz, Probabilistic solar forecasting: Benchmarks, post-
processing, verification, Solar Energy 252 (2023) 72–80.

[45] C. Möhrlen, R. Bessa, N. Fleischhut, A decision-making experiment under wind
power forecast uncertainty, Meteorological Applications 29 (3) (2022) e2077.

[46] B. Uniejewski, R. Weron, Regularized quantile regression averaging for probabilis-
tic electricity price forecasting, Energy Economics 95 (2021) 105121.

[47] G. Marcjasz, M. Narajewski, R. Weron, F. Ziel, Distributional neural networks for
electricity price forecasting, Energy Economics 125 (2023) 106843.

16

[48] Y. Romano, E. Patterson, E. J. Candès, Conformalized quantile regression, in: Pro-
ceedings of the 33rd International Conference on Neural Information Processing
Systems, Curran Associates Inc., Red Hook, NY, USA, 2019.

[49] L. S. Shapley, Notes on the n-person game – II: The value of an n-person game,
RAND Research Memorandum (1951).

[50] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, S.-I. Lee, From local explanations to global understanding
with explainable AI for trees, Nature Machine Intelligence 2 (1) (2020) 56–67.

[51] I. C. Covert, S. Lundberg, S.-I. Lee, Understanding global feature contributions with
additive importance measures, in: Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS ’20, Curran Associates Inc., Red
Hook, NY, USA, 2020.

[52] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions,
in: Proceedings of the 31st International Conference on Neural Information Pro-
cessing Systems, NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017, p.
4768–4777.

[53] C. Wan, Z. Xu, J. Østergaard, Z. Y. Dong, K. P. Wong, Discussion of “combined
nonparametric prediction intervals for wind power generation”, IEEE Transactions
on Sustainable Energy 5 (3) (2014) 1021–1021.

Appendix A. Conformalizing quantile forecasts

The package also offers postprocessing of predictive distributions by confor-
malizing quantile forecasts, a method initially introduced to improve the coverage
of prediction intervals derived from quantile regression[48]. The same idea can be
employed to conformalize individual quantile forecasts instead of prediction in-
tervals. Given the forecasts q̂τ,t from a prediction model for a τ-quantile, calculate
the non-conformity scores defined as

λt = yt − q̂τ, t. (A.1)

Then, the conformalized quantile prediction is given by:

q̃τ, t = q̂τ, t + Q1−τ(λ), (A.2)

where Q1−τ(λ) is the (1 − τ)-th quantile of nonformity score λt for t ∈ S.
Call conformalize() or its in-place counterpart conformalize!() to use this func-

tionality on a QuantForecasts object. See Section Appendix C.3 for an example
usage.

17

Appendix B. Shapley values and forecaster contributions

When averaging multiple predictions, the question of what each forecaster
brings to the table arises. To answer it, we can use the concept of Shapley values
[49]. They were originally developed to fairly distribute total wins (→ predictive
power) among players (→ ensemble components) in a cooperative game based
on their individual contributions. In our approach, we consider a coalition game
vx(M), defined as

vx(M) = −L
(
Avex(M), x

)
, (B.1)

where M is a non-empty subset of players (→ m ≥ 1 forecasters), L is a loss
function and Avex(M) is the prediction of x obtained by averaging forecasts from
M. Shapley values for vx(M) are analogous to the Loss SHapley Additive ex-
Planations (LossSHAP) [50] of model Avex(M), while their mean over the test
period is a counterpart of the Shapley Additive Global importancE (SAGE) [51].
Note that we consider simple averaging methods for which marginal contributions
can be calculated directly, without resorting to approximation algorithms required
by the popular in the machine learning literature SHapley Additive exPlanations
(SHAP) [52], as well as by LossSHAP and SAGE.

For the game vx(M) and a set of N players (→ forecasters), Shapley value ϕi

of player i is usually defined as [49]:

ϕi =
1
|N|

∑
M∈P(N\{i})

(
|N| − 1
|M|

)−1

[vx(M∪ {i}) − vx(M)] . (B.2)

The sum above extends over the entire power set P(N\{i}), i.e., the set of all sub-
sets of N less forecaster i, but including the empty set ∅. Since when averaging
forecasters there is no reasonable interpretation for the empty set, we omit the
empty coalition and define Shapley contributions as:

Φi =
1
|N|

∑
M∈P(N\{i})\∅

(
|N| − 1
|M|

)−1

[vx(M∪ {i}) − vx(M)] , (B.3)

which are related to Shapley values through the relation:

Φi = ϕi − vx({i}) + vx(∅). (B.4)

While the standard Shapley values sum up to value of the grand coalition
vx(N) (→ the accuracy of the ensemble average), Shapley contributions sum up
to the accuracy gained from averaging:∑

i∈N

Φi = vx(N) −
1
|N|

∑
i∈N

vx({i}), (B.5)

18

i.e., the difference between the accuracy of the ensemble average and the average
accuracy of individual ensemble components. The

Although the Φi’s defined by Eq. (B.3) differ from standard Shapley values
and discount the standalone value of players, they remain fair allocations, in the
sense that Φi > Φ j if and only if vx({i}) > vx({ j}) for N = {i, j}. Furthermore, the
properties of symmetry, linearity and null-player also hold for the Φi’s.

The PostForecasts.jl package provides the shapley() function that calculates
Shapley values for point or probabilistic forecasts using an arbitrary averaging
method and payoff function. The following snippet calculates MAE-based en-
semble contributions for a pool of four point forecasts:

1 using PostForecasts

2 pf = loaddata (: epex12)

3 players = decouple(pf)

4 coalition(X) = average(X)

5 payoff(x) = -mae(x)[1]

6 contributions = shapley(players , coalition , payoff)

Note that the payoff used in this example is the negative of the MAE (as in Eq.
(B.1)), which means that we reward the players for minimizing the loss function.

Appendix C. Additional examples

Appendix C.1. Probabilistic forecasting of day-ahead electricity prices
In this example we show how to compute probabilistic forecasts of day-ahead

electricity prices from point forecasts stored in the EPEX dataset (see Section
2.3.3) for all hours of the year 2023, using three different postprocessing schemes
– IDR, CP and QRA. See Lipiecki et al. [5] for more details on this forecasting
task.

The code snippet below first creates a dictionary qf that for each key (corre-
sponding to the postprocessing method) will store a vector of 24 QuantForecasts
objects. Then it iterates over the 24 hours of the day, loads the point forecasts and,
using each method, generates the probabilistic forecasts of 9 deciles (i.e. 10%,
20%, ..., 90% percentiles) for 2023:

1 using PostForecasts

2 methods = [:idr , :cp , :qr]

3 qf = Dict((m => Vector{QuantForecasts }(undef , 24) for m in

methods)...)

4 for h in 1:24

5 pf = loaddata("epex$(h)")

6 for m in methods

7 qf[m][h] = point2quant(pf , method=m, window =56,

quantiles =9, start =20230101 , stop =20231231)

19

8 end

9 end

Probabilistic forecasts can then be combined, e.g., using vertical distribution av-
eraging → function paverage(), see Eq. (8), and the CRPS of the individual and
the combined predictive distributions can be compared:

1 qf[:ave] = Vector{QuantForecasts }(undef , 24)

2 for h in 1:24

3 qf[:ave][h] = paverage ([qf[m][h] for m in methods],

quantiles =9)

4 end

5 println("Method \t| CRPS ")

6 println("-"^20)

7 for m in [methods ..., :ave]

8 println(uppercase(string(m)), " \t| CRPS: ", round(sum(

crps.(qf[m]))/24, digits =3))

9 end

10 """

11 Method | CRPS

12 --------------------

13 IDR | CRPS: 9.752

14 CP | CRPS: 9.822

15 QR | CRPS: 9.986

16 AVE | CRPS: 9.248

17 """

Looking at the output results, we can observe that averaging probabilistic fore-
casts obtained from three different methods leads to a significantly smaller CRPS.
Combining forecasts is known to improve the accuracy, and often outperforms the
single best model. For general considerations of forecast averaging, we refer the
reader to Wang et al. [53], and for a more extensive analysis of combining IDR,
CP and QRA in the context of electricity price forecasting to Lipiecki et al. [5].
Note that the computations can take some time. While IDR and CP are almost
instantaneous, QRA is more time-consuming and can take up to a few minutes.

Appendix C.2. Variants of quantile regression
There are multiple approaches to applying quantile regression to a pool of

point forecasts, here we compare four, which can be readily computed with the
PostForecasts.jl package:

• Quantile Regression Averaging (QRA), where each point forecast is treated
as a separate regressor in a multiple quantile regression [11, 22, 23].

20

• Quantile Regression Machine (QRM), where point forecasts are averaged
and treated as a single regressor in a simple quantile regression [25, 29].

• Quantile Regression with averaging over probabilities (QRF), where each
point forecast is treated as a regressor in a simple quantile regression and
the output distributions of m ≥ 1 quantile regressions are vertically (see
Figure 1) averaged over probabilities [30, 31].

• Quantile Regression with averaging over quantiles (QRQ), where each point
forecast is treated as a regressor in a simple quantile regression and the out-
put distributions of m ≥ 1 quantile regressions are horizontally (see Figure
1) averaged over quantiles [30].

The code below shows how to compute probabilistic forecasts of day-ahead elec-
tricity prices at 19:00 for the entire 2021 from point forecasts stored in the EPEX
dataset, using the above four variants of quantile regression and a one-year train-
ing window. Once computed, the predictive distributions are compared using the
CRPS:

1 using PostForecasts

2 pf = loaddata (: epex20)(20200101 , 20211231)

3 qf = Dict()

4

5 qf["QRA"] = point2quant(pf , method =:qr , window =365, quantiles

=9)

6 qf["QRM"] = point2quant(average(pf), method =:qr , window =365,

quantiles =9)

7 qf["QRF"] = paverage(point2quant .(decouple(pf), method =:qr ,

window =365, quantiles =9))

8 qf["QRQ"] = qaverage(point2quant .(decouple(pf), method =:qr ,

window =365, quantiles =9))

9

10 println("Method \t| CRPS ")

11 println("-"^20)

12 for method in ["QRA", "QRM", "QRF", "QRQ"]

13 println(method , "\t| ", round(crps(qf[method]), digits =3)

)

14 end

15 """

16 Method | CRPS

17 --------------------

18 QRA | 10.464

19 QRM | 10.229

20 QRF | 10.308

21 QRQ | 10.285

22 """

21

Note how the input forecasts change when passed on to the point2quant() func-
tion. For the default QRA method the input is simply the pf object, for the QRM
it is the averaged point forecast→ average(pf), while for the QRF and QRQ the
inputs are vectors of point forecasts→ decouple(pf). The latter are later averaged
vertically→ paverage() or horizontally→ qaverage().

While all of these approaches use the same information set and aim to forecast
the same target variable, the differences in processing information lead to different
forecasting accuracy. The performance of each method may differ based on the
accuracy of input point forecasts, the size of the forecast pool, the length of the
training window and the dataset.

Appendix C.3. Conformalizing weather predictions
In this example we show how to conformalize quantile forecasts to improve the

coverage of predictive distributions of weather variables from the PANGU dataset
postprocessed using IDR, and visualize the results using the Plots package.

The script presented below first selects the variable to forecast and the lead
time of point predictions. Then using the function point2quant() computes the
quantile forecasts qf for 9 deciles using the IDR with a training window of 364
days and calculates the miscoverage, i.e., the difference between nominal and
empirical coverage. Then, it conformalizes qf using a 182-day training window
and computes the miscoverage of conformalized quantiles. See Section Appendix
C.3 for details.

1 using PostForecasts , Plots

2

3 variable = :u10 # u10 , c10 , t2m , t850 or z500

4 leadtime = 24 # between 0 and 186, divisible by 6

5

6 pf = loaddata(Symbol (:pangu , leadtime , variable))

7

8 qf = point2quant(pf, method =:idr , window =364, quantiles =9)

9 miscoverage_idr = (coverage(qf) - getprob(qf)).*100

10 conformalize !(qf , window =182)

11 miscoverage_cidr = (coverage(qf) - getprob(qf)).*100

Note that the in-place function conformalize!() will leave the first 182 unmodified
predictions in qf, ensuring that the we compare the results on the same time period.
Figure C.3 presents the comparison of miscoverage idr and miscoverag cidr.

Appendix C.4. Plotting function for the ’Probabilistic forecasts as a decision
support tool’ example

22

Figure C.3: A comparison of the miscoverage, i.e., the difference between nominal and empirical
coverage, for IDR-implied quantile forecasts before and after conformalization. Conformalizing
the forecasts shrinks the miscoverage towards zero, which corresponds to improving the reliability
– the empirical coverage of the quantile is closer to the nominal one.

1 using PostForecasts , Plots

2 theme (:default , palette = theme_palette (:dark))

3

4 function plot_obs !(plt , fs:: Forecasts; kwargs ...)

5 kwargs=Dict{Symbol , Any}(kwargs)

6 kwargs [:st] = haskey(kwargs , :st) ? kwargs [:st] : :

scatter

7 kwargs [:msw] = haskey(kwargs , :msw) ? kwargs [:msw] : 0

8 kwargs [:label] = haskey(kwargs , :label) ? kwargs [: label]

: nothing

9 plot!(plt , viewobs(fs); kwargs ...)

10 end

11

12 function plot_quantile !(plt , qf:: QuantForecasts , quantile ::

Integer; kwargs ...)

13 kwargs=Dict{Symbol , Any}(kwargs)

14 kwargs [:lw] = haskey(kwargs , :lw) ? kwargs [:lw] : 2

15 kwargs [:label] = haskey(kwargs , :label) ? kwargs [: label]

: nothing

16 plot!(plt , viewpred(qf , eachindex(qf), quantile); kwargs

...)

17 end

18

19 function plot_intervals !(plt , qf:: QuantForecasts; kwargs ...)

20 kwargs=Dict{Symbol , Any}(kwargs)

21 kwargs [:lw] = haskey(kwargs , :lw) ? kwargs [:lw] : 0.0

23

22 kwargs [:fa] = haskey(kwargs , :fa) ? kwargs [:fa] : 0.15

23 kwargs [:label] = haskey(kwargs , :label) ? kwargs [: label]

: nothing

24 if npred(qf) % 2 == 0

25 for i in 1:Int(npred(qf)/2)

26 plot!(plt , viewpred(qf , eachindex(qf), i),

fillrange=viewpred(qf, eachindex(qf), npred(qf)-i+1);

kwargs ...)

27 end

28 else

29 central_quantile = Int((npred(qf) -1)/2) + 1

30 for i in 1:(central_quantile -1)

31 plot!(plt , viewpred(qf , eachindex(qf),

central_quantile -i), fillrange=viewpred(qf, eachindex(qf),

central_quantile+i); lw=0, kwargs ...)

32 end

33 end

34 end

35

36 function plot_trades(qfbuy , qfsell)

37 plt = plot(legend =:bottom , xlabel="Days", ylabel="Price (

EUR/MWh)", xticks =1:14 , framestyle =:box)

38 plot_intervals !(plt , qfsell , color =1)

39 plot_intervals !(plt , qfbuy , color =4)

40 plot_quantile !(plt , qfsell , 5, color =1)

41 plot_quantile !(plt , qfbuy , 5, color =4)

42 plot_obs !(plt , qfsell , color=1, label="Sell price")

43 plot_obs !(plt , qfbuy , color=4, label="Buy price")

44 return plt

45 end

24

	SoftwareX_PostForecasts_jl.pdf
	Motivation and significance
	Software description
	Software architecture
	Implemented postprocessing methods
	The `normal' benchmark
	Historical Simulation and Conformal Prediction
	Isotonic Distributional Regression
	Quantile Regression Averaging

	Additional software functionalities
	Forecast averaging
	Conformalizing quantile forecasts
	Shapley values and forecaster contributions
	Forecast evaluation

	Sample datasets

	Illustrative examples
	Loading and postprocessing point forecasts
	Probabilistic forecasting of day-ahead electricity prices
	Variants of quantile regression
	Conformalizing weather predictions
	Probabilistic forecasts as a decision support tool

	Impact and conclusions

	SoftwareX_PostForecasts_jl.pdf
	Motivation and significance
	Software description
	Software architecture
	Implemented postprocessing methods
	The 'normal' benchmark
	Historical Simulation and Conformal Prediction
	Isotonic Distributional Regression
	Quantile Regression Averaging

	Additional software functionalities
	Forecast averaging
	Forecast evaluation
	Sample datasets

	Illustrative examples
	Loading and postprocessing point forecasts
	Probabilistic forecasts as a decision support tool

	Impact and conclusions
	Conformalizing quantile forecasts
	Shapley values and forecaster contributions
	Additional examples
	Probabilistic forecasting of day-ahead electricity prices
	Variants of quantile regression
	Conformalizing weather predictions
	Plotting function for the 'Probabilistic forecasts as a decision support tool' example

