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Abstract

Political polarization hinders collective decision-making across multiple domains, from public health to
environmental policy. Therefore, depolarization strategies are crucial and have been increasingly studied.
Anticonformity, responding to social influence by opposing the opinions of others, has been associated with
increased polarization, while its potential role as a depolarizing force has been largely overlooked. Although
psychologists point to different forms of anticonformity, most computational models focus solely on xeno-
phobia, prejudice against outsiders, which radicalizes opinions. Our work addresses this gap by considering
another type of anticonformity – asserting uniqueness. We propose the counterintuitive hypothesis that in-
creasing the disagreement by anticonforming to the influence group can reduce issue-based polarization.
Within a family of computational models, we show that a depolarizing intervention based on promoting
uniqueness may be more effective than traditional interventions, such as decreasing in-group favoritism or
enhancing tolerance. We discuss the relevance of our findings through the lens of recent psychological exper-
iments on strategic anticonformity, which demonstrate the potential of applying the proposed depolarizing
intervention in real-world settings.

Keywords: Political polarization, strategic anticonformity, opinion dynamics, bounded confidence

1. Introduction

When a polarized society has to make a collective decision, how can the members of opposing factions
reach a compromise? Numerous papers studied how facilitating discussion across the party line and promot-
ing openness to different views can decrease issue-based polarization (Santoro and Broockman, 2022; Bail
et al., 2018; Combs et al., 2023; de Jong, 2024; Wojcieszak and Warner, 2020). We approach this problem
by considering an overlooked type of anticonformity and propose a counterintuitive solution — instead of
directly promoting agreement, we suggest that encouraging people to stand out from the group can act as
a significantly more effective and universal depolarizing strategy. In an extensive computational study of a
family of opinion dynamics models we demonstrate how anticonformity-based behavioral intervention can
help polarized communities reach the middle ground. Finally, we provide an empirical justification for our
theoretical framework, based on the recently conducted social experiments.

First, we want to emphasize that the problem of depolarizing a society is distinct from preventing polar-
ization, and for this reason the starting point of our considerations is a society that is already divided into
two factions, which represent partisan or ideological identity. This division is the cornerstone of political
polarization (Smith et al., 2024; Fasching et al., 2024; Baldassarri and Page, 2021; Mason, 2018) that draws
the line between us (the in-group) and them (the out-group). In polarized societies, positions on other issues
sort along this single axis of conflict (McCoy et al., 2018), either in the process of partisan sorting or is-
sue alignment (Baldassarri and Gelman, 2008; Kozlowski and Murphy, 2021). Recent studies highlight the
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growing partisan polarization on climate policy issues (Chen et al., 2021; David Caldwell and Vivyan, 2024).
Hence, in our study, the agents embedded in this factional social environment face a public conflict over the
decision among three ranked choices, and the choice preference of each agent is initially aligned with its
camp: individuals within each faction share the same preference, while members of opposing factions hold
maximally divergent positions. Since affective polarization is without a doubt an important aspect of the
modern public debate (Iyengar et al., 2019; Druckman et al., 2021), we consider scenarios with different lev-
els of in-group favoritism, which allows to capture the structural aspect of polarization — the formation of
clusters of like-minded people. This phenomenon, closely related to echo chambers, is particularly prevalent
in online social networks (Cota et al., 2019; Ebeling et al., 2023; Falkenberg et al., 2024; Fraxanet et al.,
2024; Hohmann et al., 2023; Magdaci et al., 2022). In this context, we explore the effectiveness of various
interventions aimed at overcoming the issue-based polarization, which refers to the differences in individ-
uals’ opinions. We focus on this type of polarization, because failing to reach a middle ground can hinder
the initiatives that require collective action and interfere with the decision-making process, e.g. regarding
environmental issues (Falkenberg et al., 2022; Judge et al., 2023; David Caldwell and Vivyan, 2024). And
with increasingly severe effects of climate change, collective action is more important than ever before. In
their academic call to action, Debnath et al. (2023) stress: “The time for substantial climate action is now,
and public opinion matters in people-centric system-level change”. Hence it comes as no surprise that afters
years of intensive research on the issue of polarization, depolarization interventions are becoming the focal
point, both within computational models (Axelrod et al., 2021; Górski et al., 2023; Ojer et al., 2023; Borges
et al., 2024; Schweighofer and Garcia, 2024) and empirical social studies (Balietti et al., 2021; Wojcieszak
and Warner, 2020; Gugushvili, 2024; Doornbosch et al., 2024; Park and Warner, 2024; de Jong, 2024; Flores
et al., 2022).

In this paper, we ask whether anticonformity can be used as a depolarizing strategy and, if so, under
what conditions it is effective. The novelty of this paper is two-fold. First, to our knowledge, anticonformity
has never been used as a depolarizing strategy. In contrast, it has generally been believed to strengthen
polarization, mainly because previous studies have focused on xenophobia-driven anticonformity, which is
only one of several types of anticonformity (Nyczka et al., 2018). In this paper, we propose the use of
anticonformity motivated by the desire to assert uniqueness as a depolarizing intervention strategy, an idea
that has not yet been explored in computational or conceptual models. Second, we introduce and analyze an
entire family of computational models to rigorously test our hypothesis on the effectiveness of anticonformity
as a depolarizing force. All of these models are derived from the three-state q-voter model (Lipiecki and
Sznajd-Weron, 2022), but only one has been analyzed so far, and in a simpler version that does not distinguish
between in-group and out-group interactions, which is a key concept in this paper. We will explain this in
more detail after we introduce the model, in the last part of Section 3.

2. Related works

In the context of our paper, a particularly interesting approach was suggested by Axelrod et al. (2021).
They developed the Attraction–Repulsion Model — an agent-based model in which individuals are more
likely to be exposed to and attracted by views similar to their own, while being repelled by views that are
overly dissimilar. Based on this model, several interventions were proposed. The first is to increase tolerance
(broadening the range of acceptable viewpoints) in order to prevent or slow polarization by fostering a more
moderate population. This idea is consistent with the proposition of Van Der Maas et al. who suggested that
one intervention to reduce polarization is to introduce agents into the system with more flexible attitudes that
allow compromise. He used the metaphor of the meat-eating vegetarian — an agent who acts as a bridge
between vegetarians and meat-eaters and can therefore communicate with and influence both groups (Van
Der Maas et al., 2020). The logic of these interventions seems intuitive — those holding moderate views
attract some of the more radical individuals. Yet, as is usually the case with emergent phenomena, our intu-
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ition can fail in predicting the macro effects of micro level interventions. A somewhat contradictory result
obtained in other agent-based models shows that sometimes increasing individuals’ openness to assimilative
social influence leads to more opinion bi-polarization (Liu et al., 2022). In agreement with this finding,
another depolarization strategy proposed by Axelrod et al. (2021) focuses on reducing the exposure to dis-
similar views. There is conflicting evidence in the literature as to whether increased contact with opponents
increases polarization, decreases it, or has little or no effect (Santoro and Broockman, 2022; Bail et al., 2018;
Combs et al., 2023; de Jong, 2024; Wojcieszak and Warner, 2020).

These results paint a puzzling picture. On one hand – it seems beneficial to be open to opposing views,
on the other hand – being exposed to people that are ideologically different from us can escalate the divide.
However, when we consider the rules of social response typically considered in computational models, this
seeming contradiction can be resolved — negative interactions between individuals holding opposing views
drives them further away, hence decreasing the frequency of such interactions has a positive impact on po-
larization. This social response, which can be called xenophobia, is to the best of our knowledge the only
type of anticonformity considered so far in the context of polarization (Siedlecki et al., 2016; Axelrod et al.,
2021; Liu et al., 2022). But this is merely one form of anticonformity among many others (Nail et al., 2013).
Another may be to assert uniqueness or to establish one’s behavioral freedom. In this case, people tend to dis-
tance themselves from similar individuals. Recently, Dvorak et al. (2024) have shown that standing out from
the group can be a strategic response in certain situations where people are evaluated. Their study provides
much needed experimental insights into the occurrence of anticonformity in group interactions. Yet they
conclude that “societal benefits and costs of conformity and anticonformity may vary considerably across
situations”. Hence in this paper, we pose the question: Can this type of anticonformity depolarize polarized
factions? To answer this question we evaluate the interplay among three different depolarizing strategies:
enhancing anticonformity through asserting uniqueness, fostering tolerance, and promoting out-group con-
tacts. We show that only anticonformity consistently contributes to depolarization, while the effectiveness of
the other two interventions depends on specific conditions.

3. Model

In order to thoroughly test the role of strategic anticonformity in the depolarization of an initially po-
larized system, we will consider several versions of the general model of three-state opinion dynamics. We
begin the description of the model with the part that is common to all versions.

We consider the system of N agents, also called voters or individuals. Each agent, indexed by x ∈
{1, 2, . . . ,N}, is characterized by two attributes, one static and one dynamic. The static attribute denotes
group membership — everyone can belong to one of two groups: A or B. We write that a given agent is a
member of group A/B, or alternatively, that a given agent is of type A/B. The second attribute is a dynamic
variable sx(t):

sx(t) = i ∈ {−1, 0, 1}, (1)

describing the individual opinion at time t.
The voters update their opinions after being exposed to group influence. Groups that the agents inter-

act with can be composed from members of both the same faction (in-group interactions) and the opposing
one (out-group interactions). The only distinction between in-group and out-group interactions will rely on
their frequency. To describe this, we introduce a parameter β, defined as the frequency of out-group inter-
action. Thus β < 1/2 corresponds to interaction pattern with a homophily bias, which models the in-group
favoritism. Noteworthy, our approach does not entail the out-group hostility, which is typically associated
with affective polarization (Judge et al., 2023; Smith et al., 2024). However, as reviewed by Hewstone et al.
(2002), the in-group favoritism does not have to be accompanied by the out-group antagonism. Further-
more, Iyengar et al. (2019) argue that more research is required to establish which sentiment contributes
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more to the affective polarization. They point to evidence that in some situations, partisan bias is driven
mostly by in-group love rather than out-group dislike.

Having laid out the interaction patterns, we can proceed to the rules of opinion dynamics in our setup,
which are given by the threshold q-voter model (Nyczka et al., 2018; Vieira and Anteneodo, 2018; Vieira
et al., 2020). This model is particularly interesting in the context of social interactions. Firstly, it belongs to
the class of complex contagion models, which means that one agent must be reinforced by multiple others
to be influenced, as opposed to simple contagions where one individual is sufficient to induce change. While
simple contagion is appropriate for modeling the spread of a disease, complex contagion is much more
appropriate when dealing with opinion dynamics (Centola and Macy, 2007; Vasconcelos et al., 2019; Borges
et al., 2024). Secondly, it is a reversible model, by which we mean that the states of individual agents can
shift back and forth (Kempe et al., 2015). Such reversibility reflects the fact that opinions are relatively
volatile (Glynn et al., 2018). Furthermore, the threshold q-voter model can describe both the unanimity rule
and the majority rule, as well as all intermediate types of influence used in psycho-social experiments, as
reviewed briefly in Nyczka et al. (2018).

In our computational model, we adapt the threshold q-voter rule to the two-faction structure. Thus, at
each time step, a target agent is randomly selected and then a group of Q agents, called the Q-panel, is
formed. The members of the Q-panel are drawn at random either from faction A or B, with the selection
frequency determined by the parameter β: with probability β, a member of the Q-panel is chosen from the
faction to which the target agent does not belong, and with probability 1 − β, from its own faction, as shown
in Fig. 1. If there are at least q agents within the Q-panel who share the same opinion, they have enough
influence to affect the target; we will refer to this influential group as the q-source. The value of q must lie
within the interval [⌊Q/2 + 1⌋,Q], where the left bound corresponds to the majority rule, and the right bound
corresponds to the unanimity rule, considered in the original formulation of the q-voter model (Castellano
et al., 2009). In terms of the social influence exerted on the target, we extend the model beyond its original
formulation. Specifically, we will consider the following types of social responses:

1. Conformity with bounded confidence: The target agent will change its opinion only if there are
at least q agents in the influence group who (a) share the same opinion and (b) this opinion differs
from the target’s opinion by exactly 1. The target agent then adopts the opinion signaled by the q-
source. The rule described by (b) is the so called bounded confidence (BC), which was first studied
for continuous opinions (Deffuant et al., 2000; Hegselmann and Krause, 2002) and is by now one of
the most common mechanisms employed in opinion dynamics models (Ye et al., 2025). This type of
social response, which is related to homophily, is considered to be one of the most important factors
in the emergence of polarization (Axelrod, 1997; Mäs and Flache, 2013).

2. Conformity without bounded confidence: The target agent will change its opinion only if there are
at least q agents in the influence group whose opinions are on the same side with respect to the opinion
of the target, i.e. there are either at least q agents x such that sx(t) < sx′(t), or q agents x such that
sx(t) > sx′(t), where x′ is the target agent. The opinion of the target then changes by one in the
direction of the opinions of the q-sources.

3. Anticonformity: We examine the form of anticonformity that occurs when an agent interacts with
a group that shares its views and changes its opinion to stand out from the crowd, in the spirit of
asserting uniqueness. Thus, the q-source is formed if at least q agents from the Q-panel have exactly
the same opinion as the target. If their opinion is −1 or 1, the target will set its state to 0; and if the
opinion is 0, it will randomly choose between −1 and 1.

The first and third types of social responses have been considered in the three-state q-voter model (Lipiecki
and Sznajd-Weron, 2022), but never within the threshold q-voter model. The second type of conformity
has never been considered before. It can be understood as a higher tolerance scenario, since agents now
also conform to those whose opinions differ from their own by more than 1. Moreover, unanimity in the
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q-source is not required. Thus, the introduction of this type of social response will allow us to study the
role of tolerance enhancement. On the other hand, it can also be treated as a different model of conformity,
allowing us to test the universality of our results.

Q-panel

Q-panel

A B

target at least q voters 
are unanimous

target target

target target

anticonformityopinions conformity

Figure 1: Schematic visualizations of the dynamic model with conformity and anticonformity as a depolarizing intervention. First,
a target agent is randomly selected, and the members of the Q-panel are randomly drawn from either faction A or B, with the
proportion controlled by the parameter β. Second, if at least q agents within the Q-panel share the same opinion, they influence the
target: with probability 1 − p, the target conforms to the Q-panel, and with probability p, the target anticonforms.

We will consider all three combinations of the two different types of social responses defined above.
As an example, schematic visualization of the model with conformity and anticonformity as a depolarizing
intervention is shown in Fig. 1. Each combination will be examined under two approaches: dynamic and
static, resulting in a total of six different models. In the dynamic approach, agents randomly switch between
two types of social response, for example between anticonformity (with probability p) and conformity (with
probability 1 − p). In the static approach, agents’ social responses remain fixed over time: a fraction p of
agents always exhibit anticonformity, while a fraction 1 − p always conforms. Of course, the same goes for
other combinations of social responses.

In statistical physics, the dynamic and static approaches are referred to as annealed and quenched, re-
spectively. In the social context, the annealed (dynamic) approach has been associated with situation-specific
responses, whereas the quenched (static) approach has been linked to person-specific responses. However,
in this paper, we do not use this terminology because we consider the different types of social responses as
intervention strategies, rather than associating them with situational or personality-based factors.

At this point, we would like to clarify the novelty of this paper from a modeling perspective in more
detail than was done in the introduction. So far, only one of these six models has been studied, which is a
combination of conformity with bounded confidence and anticonformity within the dynamic approach (Li-
piecki and Sznajd-Weron, 2022). Moreover, this analysis was performed only within the q-voter model and
never within the threshold q-voter model. Finally, the model was examined in a different setting, where each
agent had the same probability of interacting with all other agents, corresponding to β = 0. Therefore, all
results that will be presented in this paper are new.

The model defined in this section can be described by the set of ordinary differential equations (ODEs)
representing the temporal change ciX(t) of the concentration of agents with a given opinion in each of the
two factions. The ODEs for all six versions of the model are derived in Appendix A, along with the details
of the numerical analysis we conducted in Appendix B. For additional explanation of the models, we refer
the reader to pseudocodes of Monte Carlo simulations provided in Appendix D, which can be used for
numerical analysis of finite-size systems.

4. Polarization Index

Since our goal is to investigate how effectively depolarization interventions work for two polarized
groups, we start from a state of maximum polarization as the initial condition. However, to evaluate po-
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larization strength, we first need to define a suitable measure.
Let ciX(t) denote the concentration of agents with opinion i ∈ {−1, 0, 1} in faction X ∈ {A, B} at time t:

ciX(t) D
NiX(t)

N
, (2)

where NiX(t) is the number of agents with opinion i in faction X at time t.
We use the well-established polarization index µ (Morales et al., 2015) to quantify polarization and

consensus. Although originally defined for continuous opinions in the interval [−1, 1], we note that it can
be adapted to our model. By mapping the concentrations of our three discrete opinions onto Dirac delta
distributions centered at −1, 0 and 1 with respective masses of c−1, c0 and c1 (where ci = ciA+ciB), we define
the polarization index µ for our three-state opinion system:

µ =
1 − |c−1 − c1|

2

(
c1

c0 + c1
+

c−1

c−1 + c0

)
. (3)

According to this definition, maximum polarization (µ = 1) occurs if and only if c−1 = c1 = 1/2, while it
vanishes when a single opinion reaches full support. In our study, all opinion distributions corresponding to
polarized states are characterized by µ > 1/2, while consensus states by µ < 1/2, see Appendix C.

5. Results

To compare different types of interventions across various models, we will construct phase diagrams that
show the polarization index µ in the stationary state as a function of the probability of out-group interaction,
β, and the level of intervention, p. The phases on these diagrams will be identified by looking at the opinion
distribution in each of the group, as well as in the entire system, as shown in Fig. 2. The main result
comparing different intervention strategies within all six models is shown in Fig. 3. We have studied the
models for various values of the parameters Q and q, but we first focus on the results for Q = 4 and q = 3,
as this corresponds to a 75% majority in the influence group – a value commonly used in psychological
experiments (Goldstein et al., 2008; Nyczka et al., 2018). Let us start with the model of conformity with BC
& anticonformity as a depolarizing intervention, for which phase diagrams are shown in the left panels of
Fig. 3. We see that the phase diagram is composed of three phases in both the dynamic and static approach.
However, these phases are different in each of the two approaches. In the dynamic version, the only possible
type of consensus is the middle-ground consensus. It is the strongest just after crossing the boundary, denoted
by the white line, between the reddish (polarization) and blueish (consensus) regions. After crossing this line,
the dominance of the middle opinion decreases and the systems moves towards disagreement (µ = 1/2),
where the concentrations of all three opinions are equal.

For the dynamic approach, increasing the probability of out-group interaction, i.e., the number of con-
tacts between members of two groups, does not depolarize the system, and some level of anticonformity is
always necessary. Moreover, promoting out-group interactions in the presence of moderate anticonformity
can lead to the transition from between-group to in-group polarization. This is accompanied by an increase
in the polarization index (darker red color), achieving the opposite effect. However, there exists an optimal
β, for which the anticonformity level required to reach middle-ground consensus is the smallest. It means
that more frequent out-group interactions can be beneficial, but not always and only to a certain extent. In
the static approach (lower panels of Fig. 3), however, the system can be depolarized either by encouraging
more frequent out-group interactions or by increasing anticonformity. Yet, unless the probability of out-
group interaction exceeds a certain threshold, raising anticonformity remains the only effective method for
depolarization. Furthermore, when out-group interaction is high but anticonformity is low, the system tends
to reach pole consensus—where the extreme option dominates. Such a consensus can deeply dissatisfy mi-
nority agents with anti-dominant opinions. Additionally, pole consensus arises through symmetry breaking,
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Between-Group Polarization
BGP

Pole Consensus
PC

Middle-Ground Consensus
MGC

In-Group Polarization
IGP

Figure 2: Schematic visualizations of phases corresponding to social structures based on the stationary opinion distributions. The
top row shows the final distribution of opinions within each of the two factions, while the bottom row shows the distribution of
opinions across the entire system. Note that Pole Consensus may appear as the dominance of either the left or right opinion, due to
the symmetry between the extreme opinions. The opinion distributions presented in the scheme are exemplary, formal definitions
used for phase classification are provided in Appendix C. We use the same color coding to distinguish between consensus and
polarization in all subsequent figures: blue for consensus and red for polarization.

making it impossible to predict which extreme will prevail—a source of uncertainty that complicates man-
aging collective change. To achieve middle-ground consensus, interventions promoting anticonformity are
essential, as seen in the dynamic approach.

For the model of conformity without BC and anticonformity as a depolarizing intervention (middle
panels of Fig. 3), the results from both the dynamic and static approaches are nearly identical. In this model,
there are two methods to depolarize the system: increasing the probability β of out-group interaction, or
enhancing anticonformity. Below a certain threshold of β, anticonformity remains necessary to depolarize
the system. Thus, even in a tolerant environment where people conform to those who hold significantly
different opinions, some level of anticonformity is still required to achieve depolarization. However, for
larger values of β, no anticonformity is needed to depolarize the system. Consequently, we could expect that
conformity without BC would serve as an effective depolarizing intervention if the probability β of out-group
interaction is sufficiently high.

We examine this expectation in the final scenario: conformity with BC and conformity without BC as
a depolarizing intervention, as shown in the right panels of Fig. 3. This time, the results for the dynamic
and static approaches are not identical, but still similar, with two notable differences: in the static approach,
the area representing the pole consensus phase is larger, while the area representing the polarization phase
is smaller compared to the dynamic approach. More interestingly, the region of polarization is considerably
larger than in the model with anticonformity. Below a certain value of β, the system remains polarized.
Noteworthy, the probability β of out-group interaction required to depolarize the system is higher than in the
model that includes anticonformity. Furthermore, when the in-group favoritism is strong (low values of β),
it is not possible to overcome polarization with this intervention.

It is worth to note that the transitions between phases are discontinuous, which is indicated by the jump
of the polarization index, as shown in Fig. 4. Similar discontinuous transitions related to the existence of
tipping points were observed in another computational model of opinion dynamics used to describe partisan
polarization (Macy et al., 2021). In their conclusions, the authors wrote Future research is needed to investi-
gate the possibility that tipping dynamics generalize to other models of polarization. In this regard, we show
that discontinuous phases are indeed somewhat universal in partisan polarization.

So far, we have presented results only for a Q-panel size of 4 and a q-source size of 3. However, we have
also tested other values of Q and q, finding that the results change only quantitatively, as shown in Fig. 5 for
the model of conformity with BC and anticonformity. We have presented the results for only a few values
of Q: specifically, Q = 4 in Fig. 3 and Q = 2, 3 in Fig. 5. This choice of parameters is guided by empirical
social studies, which indicate that the size of a freely formed human group rarely exceeds five (Desportes
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Figure 3: The polarization index, µ, in the stationary state as a function of the probability of out-group interaction, β, and the level
of intervention, p, for Q = 4 and q = 3. Reddish colors indicate µ > 1/2, corresponding to polarized states BGP and IGP, while
bluish colors indicate µ < 1/2, corresponding to consensus states PC and MGC. The darker the color, the stronger the degree
of polarization or consensus. White lines mark the boundaries between phases defined in Fig. 2. The results are presented for:
conformity with BC & anticonformity as a depolarizing intervention (left panels), conformity without BC & anticonformity
as a depolarizing intervention (middle panels), and conformity with BC & conformity without BC as a depolarizing intervention
(right panels). The top panels display results for the dynamic approach, where p represents the probability of intervention, while the
bottom panels show results for the static approach, where p indicates the fraction of agents permanently engaging in intervention
behavior. The results were obtained by numerical evolution of the dynamic equations, as described in Appendix B. In the presented
plots, the level of intervention starts from a small-non zero value p = 0.01. For p = 0, when only conformity with BC can take
effect (left and right panels), the systems would not evolve from their initial state of total polarization, as per the model definition.

and Lemaine, 1988). Moreover, research shows that communication in small groups (up to five people) tends
to be more interactive and dialogic (Fay et al., 2000). Additionally, small groups of 3–4 people have recently
been used in a social experiment on strategic anticonformity (Dvorak et al., 2024), within which we will
discuss our results in Section 6. However, to assess the model’s sensitivity, we have conducted calculations
over a much larger range of Q and q, and the results remain qualitatively similar.

6. Conclusions

Social psychologists have identified several types of anticonformity, including strategic self-anticonformity,
also known as reverse psychology (MacDonald et al., 2011; Nail et al., 2013). This form of anticonformity
involves expressing an opinion contrary to one’s true beliefs to persuade others toward a desired outcome,
particularly when one expects that others will resist direct suggestions.

In this paper we propose a slightly different form of strategic anticonformity, although it still involves
opposing others. In our conceptualization, its strategic aspect does not stem from a prospective reward for
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Figure 4: Dependence between the polarization index µ and the level of anticonformity for the conformity with BC & anticonfor-
mity model with Q = 4 and q = 3. Results for the dynamic approach are shown in the top panels, and for the static approach in the
bottom panels. The left panels correspond to probability of out-group interaction β = 0.05, while the right panels to β = 0.2. The
results were obtained by numerical evolution of the dynamic equations, as described in Appendix B.

an individual, but rather for a collective. We propose that promoting asserting uniqueness among polarized
communities can act as an effective depolarizing intervention. Imagine that you are a manager of a team that
is experiencing polarization. Its members often cannot agree on a solution and become deadlocked, which
hampers their ability to achieve objectives. To facilitate reaching a middle-ground, you could promote anti-
conformity among your subordinates, so that some of them will try to stand out from the group. According
to the results of this study, this could help to depolarize the system more effectively than other interventions,
such as increasing tolerance (here represented by conformity without BC) or increasing the frequency of
contact between polarized groups (here represented by probability β of out-group interaction).

In our study, as in several others (Axelrod et al., 2021; Macy et al., 2021), greater tolerance supports
depolarization. However, in our case, it can only act as a depolarizing intervention if the number of contacts
between groups is sufficiently large. Similarly, a greater number of out-group contacts may promote depo-
larization, but it can also amplify existing polarization, depending on how people respond to social influence.
Interestingly, our results show that the latter can occur even without xenophobia or out-group antagonism,
which were examined in related works (Axelrod et al., 2021; Siedlecki et al., 2016).

Comparing the intervention based on strategic anticonformity with increasing the tolerance (conformity
without BC) showed that the latter cannot overcome polarization in the presence of strong in-group interac-
tion bias. Hence, if we do not have the means to influence interaction patterns and increase the number of
connections across party lines, anticonformity remains the only effective depolarization strategy.

This result seems particularly interesting in light of the recently obtained results of psychological exper-
iments conducted by Dvorak et al. (2024). Firstly, in their experiments conformity and anticonformity were
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Figure 5: The polarization index, µ, in the stationary state as a function of the probability of out-group interaction, β, and the level
of anticonformity, p, the conformity with BC & anticonformity model. Reddish colors indicate µ > 1/2, corresponding to polarized
states BGP and IGP, while bluish colors indicate µ < 1/2, corresponding to consensus states PC and MGC. The darker the color,
the stronger the degree of polarization or consensus. White lines mark the boundaries between phases defined in Fig. 2. Results for
the dynamic approach are shown in the top panels, while results for the static approach are shown in the bottom panels. Different
sizes of the Q-panel (the influence group) and the q-source (the threshold required for influence) are indicated in the upper right
corner of each panel. The results were obtained by numerical evolution of the dynamic equations, as described in Appendix B.

measured by the choice adjustment of the participant with respect to the majority choice among two other
group members. This corresponds exactly to the q = Q = 2 scenario in our model. Secondly, they find that
reward-based incentives can increase anticonformity, even in the context of factual statements. This leads
us to believe that the proposed intervention could be successfully implemented by inducing anticonformity
with an appropriate reward prospect. Thirdly, they observe that social responses are heterogeneous, which is
captured in our model by considering situation-specific and person-specific behavior. Our results show that
the depolarizing effect of anticonformity is universal across these scenarios. Finally, their estimates of the
frequency of anticonformity in the prospect of reward start at 15%, which is of the same order as the critical
probability of anticonformity required to depolarize our agent system. Furthermore, our research suggests
that tipping dynamics is quite universal within the tested models of opinion dynamics. In view of this, we
believe that our study, although theoretical, provides significant insights into the interplay of anticonformity
and polarization and that the proposed concept of strategic anticonformity as a depolarizing intervention
displays strong potential for real-world applications.
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Appendix A. Evolution equations

Appendix A.1. Dynamic approach
Let ciX(t) denote the concentration of agents with opinion i ∈ {−1, 0, 1} in faction X ∈ {A, B} at time t:

ciX(t) :=
NiX(t)

N
, (A.1)

where NiX(t) is the number of agents with opinion i in faction X at time t. The number of agents in each
faction is conserved and equal to N/2, so the following equations must hold:

c−1A(t) + c0A(t) + c1A(t) =
1
2
,

c−1B(t) + c0B(t) + c1B(t) =
1
2
.

(A.2)

Using the above equations we can reduce the number of independent variables to four. Due to the symmetry
of the boundary opinions (−1 and 1), we decide to describe the system with c−1A, c1A, c−1B, c1B. The
evolution of the system can be given in terms of transition rates γi→ j

X , representing a probability that an agent
will change its opinion from i to j, given that it belongs to faction X:

dc−1A

dt
= c0Aγ

0→−1
A − c−1Aγ

−1→0
A ,

dc1A

dt
= c0Aγ

0→1
A − c1Aγ

1→0
A ,

dc−1B

dt
= c0Bγ

0→−1
B − c−1Bγ

−1→0
B ,

dc1B

dt
= c0Bγ

0→1
B − c1Bγ

1→0
B .

(A.3)

Note that only transition probabilities between neighboring states, i.e. (i, j) : |i − j| = 1 are included in
the above system of evolution equations. This is due to the fact that within our model only unit changes
of opinion are allowed. In the dynamic approach, we consider two behavior rules, Bp and B1−p, at each
time step, a randomly selected target agent behaves according to rule Bp with probability p or rule B1−p

with probability (1 − p). The explicit formulas for transition probabilities γi→ j
X depend on the selected rules.

Below, we consider three rule combinations presented in the paper.
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Conformity with bounded confidence and anticonformity. In this version of the model, Bp corresponds to
anticonformity, while B1−p to conformity with bounded confidence. The transition probability takes the
form:

γ
i→ j
X =

[(
p −

p
2
1i=0

)
S i|X + (1 − p) S j|X

]
1|i− j|=1. (A.4)

In the above equation, S i|X is probability that at least q voters in the Q-panel of a voter from faction X hold
opinion i:

S i|X =

Q∑
r=q

(
Q
r

) [
(1 − β) 1

2 ciX + β
1
2 ciX̄

]r [
1 − (1 − β) 1

2 ciX − β
1
2 ciX̄

]Q−r

= I
[
(1 − β) 1

2 ciX + β
1
2 ciX̄ , q, Q − q − 1

]
,

(A.5)

where I is the regularized incomplete beta function and X̄ denotes the faction opposite to X.

Conformity without bounded confidence and anticonformity. In this version of the model, Bp corresponds
to anticonformity, while B1−p to conformity without bounded confidence. The transition probability takes
the form:

γ
i→ j
X =

[(
p −

p
2
1i=0

)
S i|X + (1 − p) S {k:k>i}|X

]
1 j−i=1

+

[(
p −

p
2
1i=0

)
S i|X + (1 − p) S {k:k<i}|X

]
1i− j=1,

(A.6)

where S {k:k>i}|X and S {k:k<i}|X , are the probabilities that at least q voters in the Q-panel of a voter from faction
X hold opinion larger than i and, respectively, smaller than i. They can be expressed as:

S {k:k>i}|X = I

∑
k>i

(1 − β) 1
2 ckX + β

1
2 ckX̄ , q, Q − q − 1

 ,
S {k:k<i}|X = I

∑
k<i

(1 − β) 1
2 ckX + β

1
2 ckX̄ , q, Q − q − 1

 .
(A.7)

Conformity with and without bounded confidence. In this version of the model, Bp corresponds to con-
formity without bounded confidence, while B1−p to conformity with bounded confidence. The transition
probability takes the form:

γ
i→ j
X =

[
pS {k:k>i}|X + (1 − p) S j|X

]
1 j−i=1

+
[
pS {k:k<i}|X + (1 − p) S j|X

]
1i− j=1.

(A.8)

Appendix A.2. Static approach

In the static approach, voters are heterogeneous with respect to the behavior rules. Each voter is randomly
assigned a rule, Bp with probability p orB1−p with probability 1− p, and always follows this rule. Therefore,
to describe the evolution of the system we need to consider the concentration of agents with opinion i ∈
{−1, 0, 1} in faction X ∈ {A, B} that follow behavior rule B ∈ {Bp,B1−p}:

ciXB(t) :=
NiXB(t)

N
, (A.9)

where NiXB(t) is the number of agents with opinion i in faction X and behavior B at time t. The total
number of agents in each faction, as well as the total number of agents assigned with Bp and B1−p remain
constant. Furthermore, since the behavior rules of each agent are independent and identically distributed
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random variables, the concentration of voters, which follow rule B is the same within faction A and B. This
can be formalized as

c−1XBp(t) + c0XBp(t) + c1XBp(t) =
p
2
,

c−1XB1−p(t) + c0XB1−p(t) + c1XB1−p(t) =
1 − p

2
.

(A.10)

This allows us to reduce the number of independent variables to 8. To retain consistency with the derivation
for dynamic approach, we choose c−1ABp , c1ABp , c−1AB1−p , c1AB1−p , c−1BBp , c1BBp , c−1BB1−p , c1BB1−p . Their
evolution is expressed in terms of transition probabilities γi→ j

XB between neighboring states i and j:

dc−1ABp

dt
= c0ABpγ

0→−1
ABp

− c−1ABpγ
−1→0
ABp
,

dc1ABp

dt
= c0ABpγ

0→1
ABp
− c1ABpγ

1→0
ABp
,

dc−1AB1−p

dt
= c0AB1−pγ

0→−1
AB1−p

− c−1AB1−pγ
−1→0
AB1−p
,

dc1AB1−p

dt
= c0AB1−pγ

0→1
AB1−p

− c1AB1−pγ
1→0
AB1−p
,

dc−1BBp

dt
= c0BBpγ

0→−1
BBp

− c−1BBpγ
−1→0
BBp
,

dc1BBp

dt
= c0BBpγ

0→1
BBp
− c1BBpγ

1→0
BBp
,

dc−1BB1−p

dt
= c0BB1−pγ

0→−1
BB1−p

− c−1BB1−pγ
−1→0
BB1−p
,

dc1BB1−p

dt
= c0BB1−pγ

0→1
BB1−p

− c1BB1−pγ
1→0
BB1−p
.

(A.11)

The transition probability γi→ j
XB assumes different forms depending on the behavior ruleB. Below, we provide

the formulas for three rules that are considered in the paper.

Conformity with bounded confidence. If rule B corresponds to conformity with bounded confidence, the
transition probabilities are given by

γ
i→ j
XB = S j|X1|i− j|=1. (A.12)

Conformity without bounded confidence. When B is the conformity without bounded confidence, the tran-
sition probabilities take the form:

γ
i→ j
XB = S {k:k>i}|X1 j−i=1 + S {k:k<i}|X1i− j=1. (A.13)

Anticonformity. For B equivalent to anticonformity, we obtain:

γ
i→ j
XB =

(
p −

p
2
1i=0

)
S i|X1|i− j|=1. (A.14)

Plugging Eqs. (A.12)-(A.14) into system (A.11), we obtain final equations for the evolution of our model.

Appendix B. Numerical evolution of the systems and sensitivity analysis

Given the systems of differential equations (A.3) and (A.11), we obtain the trajectories of the model
by solving the equations numerically. In this study, we consider the initial condition corresponding to total
between-group polarization, i.e., all voters in faction A are assigned with opinion −1, while all voters in
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faction B hold opinion 1. However, since some of the models considered in the study exhibit symmetry
breaking, symmetric initial conditions can correspond to unstable fixed points of the dynamical system.
Therefore, we slightly perturb the initial opinion concentrations in faction B with ε = 10−6 so that c1B(t =
0) = 1/2 − ε and c0B(t = 0) = ε. The dynamic equations are then evolved with an ODE solver until a steady
state is reached.

To check the robustness of our results, we perform a sensitivity analysis by conducting the numeri-
cal evolution of systems for perturbed initial conditions and comparing the phase classification against the
unperturbed system. The perturbations to initial conditions are parameterized by ∆ through the following
formula:

c0B(0) = ε + ∆, c1B(0) =
1
2
− ε − ∆, (B.1)

where ∆ ∈ {10−5, 10−4, 10−3, 10−2, 10−1}. We then color the phase space with the minimal ∆ for which the
phase classification of the perturbed system was different from that of the unperturbed one: the darker the
color, the higher the sensitivity (smaller ∆) of phase classification to the initial conditions. Figs. B.6 and B.7.
present the sensitivity analysis for the results presented in Figs. 3. and 5. In line with expectations, some
systems exhibit high sensitivity to initial conditions only close to the boundary between the phases, while
others are strongly robust.
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Figure B.6: Sensitivity plots for the results presented in Fig. 3., i.e. for Q = 4 and q = 3. The darker the color, the more sensitive the
phase classification is to the perturbation in initial conditions described by B.1, the most intensive blue corresponds to sensitivity
to ∆ = 10−5, while white color indicates that the classification does not change even for ∆ = 10−1. The results are presented for:
conformity with BC & anticonformity as a depolarizing intervention (left panels), conformity without BC & anticonformity
as a depolarizing intervention (middle panels), and conformity with BC & conformity without BC as a depolarizing intervention
(right panels). The top panels display results for the dynamic approach, where p represents the probability of intervention, while the
bottom panels show results for the static approach, where p indicates the fraction of agents permanently engaging in intervention
behavior.
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Figure B.7: Sensitivity plots for the results presented in Fig. 5. The darker the color, the more sensitive the phase classification is to
the perturbation in initial conditions described by B.1, the most intensive blue corresponds to sensitivity to ∆ = 10−5, while white
color indicates that the classification does not change even for ∆ = 10−1.. Results for the dynamic approach are shown in the top
panels, while results for the static approach are shown in the bottom panels. Different sizes of the Q-panel (the influence group) and
the q-source (the threshold required for influence) are indicated in the upper right corner of each panel. The results were obtained
by numerical evolution of the dynamic equations, as described in Appendix B.
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Appendix C. Phase classification

In the paper we present a schematic visualization for four distinct phases obtained in the examined
models. In the following, we lay out a formal classification according to which the phase diagrams were
obtained. Firstly, let us consider how the values of the polarization index µ change with the distribution of
the three-state opinion. In a simple case of symmetric distribution, we get µ > 1/2 if the distribution is
bimodal, µ = 1/2 when it is uniform, and µ < 1/2 for a unimodal distribution. Thus the threshold 1/2 will
act as our reference for distinguishing polarized and consensus states. Due to the fact that we are examining
two-faction social structure, the phase classification of our system will be based on system-wide polarization
index µ, as well as the faction-level indices µA and µB, defined as

µX =
1 − 2|c−1X − c1X |

2

(
c1X

c0X + c1X
+

c−1X

c−1X + c0X

)
. (C.1)

The following conditions are then used to determine the phase for a given system state:

Between-Group Polarization (BGP). [
µA <

1
2

]
∧

[
µB <

1
2

]
∧

[
µ >

1
2

]
(C.2)

In-Group Polarization (IGP). [
µA >

1
2

]
∧

[
µB >

1
2

]
∧

[
µ >

1
2

]
(C.3)

Pole Consensus (PC). [
µA <

1
2

]
∧

[
µB <

1
2

]
∧

[
µ <

1
2

]
∧ [max{c−1, c0, c1} ∈ {c−1, c1}] (C.4)

Middle-Ground Consensus (MGC).[
µA <

1
2

]
∧

[
µB <

1
2

]
∧

[
µ <

1
2

]
∧ [max{c−1, c0, c1} = c0] (C.5)

Note that the proposed phase classification is based mostly on the polarization index, and the global distri-
bution of opinion is explicitly used only to differentiate between the PC and MGC phases. The schematic
opinion distributions visualized in Fig. 2 correspond to the solutions that we found to be most common
in each phase. In our extensive computational study some systems described by the dynamic model of
anticonformity and conformity with BC evolved to states that are not recognized by the classification pre-
sented above. However, for every group size specification the percentage of unclassified states appeared in
less than 0.1% of the parameter space, and mostly in the vicinity of the phase boundaries. Additionally, in
the extended study (Q ∈ {2, ..., 10}, q ∈ {⌊Q/2⌋ + 1, ...,Q}) we found that for q ≥ 4 the static model of
conformity with BC and conformity without BC starts to exhibit an unclassified mixed phase within a
significant proportion of the parameter space. In such cases, the parameter region previously corresponding
to PC (see the bottom right panel in Fig. 3.) shrinks and the opinion distributions in this region evolve to
states in which one faction exhibits polarization and the other one – consensus. However, this observation
in no way contradicts the general conclusions that we have drawn in the paper – conformity without BC
does not allow to depolarize the system if the probability of out-group interactions is not sufficiently large.
Plots from the extended numerical study, along with the source codes for obtaining them, are available in the
replication package.
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Relation between the polarization index and opinion distribution. Since the phase classification is based on
the polarization index µ, it is worth mentioning how it translates to the distribution of opinions in the agent
system. In Fig. C.8, the polarization index is plotted with respect to c−1 and c1, with a marked boundary
between polarization and consensus. As stated previously, for symmetric distributions (c−1 = c1), the distri-
butions characterized by c0 < 1/3 correspond to polarization, which agrees with the intuitive understanding
of polarization as a bimodal opinion distribution. Furthermore, the vast majority of the final distributions we
have obtained (excluding the ones corresponding to the Pole Consensus phase) were symmetric. For asy-
metric distributions, the boundary between polarization and consensus is a convex function passing through
points (1/4, 3/4), (1/3, 1/3) and (3/4, 1/4). In this case, deriving exact and intuitive classification is non-
trivial, but it is possible to infer simple upper and lower bounds. If min {c−1, c1} is less than 1/4, then the
distribution corresponds to the consensus state; otherwise, if it is greater than 1/3, the system is in a polarized
phase. Note that although this simplified approach does not deal with all distributions, the ones remaining
correspond to relatively moderate polarization index values (close to 1/2), and are therefore less interesting
from the perspective of studying polarization and consensus.

Figure C.8: Polarization index µ with respect to the concentrations of opinions −1 and 1. Reddish colors indicate µ > 1/2,
corresponding to polarized states, while bluish colors indicate µ < 1/2, corresponding to consensus states. The darker the color, the
stronger the degree of polarization or consensus. Solid grey line indicates the boundary between polarized and consensus states.

Appendix D. Algorithms

The results presented in the main body of the paper were obtained by the numerical evolution of dynamic
equations. This approach is based on the assumption that the agent system is large enough to treat an
elementary change in agent concentrations 1/N as infinitesimal. In the following, we present pseudocodes
for Monte Carlo simulations which can be used to implement the considered models for finite-size systems.
Note that the algorithms provided leave some freedom on which weighted random sampling variant is used
to construct the Q-panel. For large systems, the differences between some of the sampling methods vanish.
Hence, whether we use the sampling with or without replacement, or even allow the target to be selected as
a member of the Q-panel, the ODE systems derived in Appendix A will remain unchanged.
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Appendix D.1. Dynamic approach

Algorithm 1: One Monte Carlo step of the dynamic model with anticonformity and conformity
with BC. A and B are the factions, i.e. subsets of agents, and S : (A ∪ B)→ {−1, 0, 1} maps agents
to their opinions.

Input: Q > 1, q ∈ (⌊Q/2⌋,Q], p ∈ [0, 1], A, B,S
Output: updated S

1 for i← 1 to |A ∪ B| do
2 Draw a random target x from A ∪ B;
3 Draw a sample Q of Q agents from (A ∪ B)\{x} (or A ∪ B) using a weighted random sampling

(with or without replacement), with weights wz = 1 − β for agents in the same faction as x and
wz = β for the rest of the agents;

4 Draw r ∈ [0, 1) from a uniform distribution;
5 if r < p then
6 if |{z : z ∈ Q ∧ S(z) = S(x)}| ≥ q then
7 if S(x) = 0 then
8 S(x)← S(x) + (−1)b, where b ∼ Bernoulli(1/2);

9 else
10 S(x)← 0;

11 else
12 if ∃s : |{z : z ∈ Q ∧ S(z) = s}| ≥ q ∧ |s − S(x)| = 1 then
13 S(x)← s;

14 return S;
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Algorithm 2: One Monte Carlo step of the dynamic model with anticonformity and conformity
without BC. A and B are the factions, i.e. subsets of agents, and S : (A ∪ B) → {−1, 0, 1} maps
agents to their opinions.

Input: Q > 1, q ∈ (⌊Q/2⌋,Q], p ∈ [0, 1], A, B,S
Output: updated S

1 for i← 1 to |A ∪ B| do
2 Draw a random target x from A ∪ B;
3 Draw a sample Q of Q agents from (A ∪ B)\{x} (or A ∪ B) using a weighted random sampling

(with or without replacement), with weights wz = 1 − β for agents in the same faction as x and
wz = β for the rest of the agents;

4 Draw r ∈ [0, 1) from a uniform distribution;
5 if r < p then
6 if |{z : z ∈ Q ∧ S(z) = S(x)}| ≥ q then
7 if S(x) = 0 then
8 S(x)← S(x) + (−1)b, where b ∼ Bernoulli(1/2);

9 else
10 S(x)← 0;

11 else
12 if |{z : z ∈ Q ∧ S(z) > S(x)}| ≥ q = 1 then
13 S(x)← S(x) + 1;
14 else if |{z : z ∈ Q ∧ S(z) < S(x)}| ≥ q = 1 then
15 S(x)← S(x) − 1;

16 return S;
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Algorithm 3: One Monte Carlo step of the dynamic model with conformity without BC and con-
formity with BC. A and B are the factions, i.e. subsets of agents, and S : (A∪B)→ {−1, 0, 1}maps
agents to their opinions.

Input: Q > 1, q ∈ (⌊Q/2⌋,Q], p ∈ [0, 1], A, B,S
Output: updated S

1 for i← 1 to |A ∪ B| do
2 Draw a random target x from A ∪ B;
3 Draw a sample Q of Q agents from (A ∪ B)\{x} (or A ∪ B) using a weighted random sampling

(with or without replacement), with weights wz = 1 − β for agents in the same faction as x and
wz = β for the rest of the agents;

4 Draw r ∈ [0, 1) from a uniform distribution;
5 if r < p then
6 if |{z : z ∈ Q ∧ S(z) > S(x)}| ≥ q = 1 then
7 S(x)← S(x) + 1;
8 else if |{z : z ∈ Q ∧ S(z) < S(x)}| ≥ q = 1 then
9 S(x)← S(x) − 1;

10 else
11 if ∃s : |{z : z ∈ Q ∧ S(z) = s}| ≥ q ∧ |s − S(x)| = 1 then
12 S(x)← s;

13 return S;

Appendix D.2. Static approach
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Algorithm 4: One Monte Carlo step of the static model with anticonformity and conformity with
BC. A and B are the factions, i.e. subsets of agents, S : (A ∪ B) → {−1, 0, 1} maps agents to their
opinions, and B : (A ∪ B) → {1, 0} maps agents to their behavior (1 for anticonformity and 0 for
conformity). Note that in the case of the static approach p = |A ∪ B|−1 ∑

x∈A∪BB(x).
Input: Q > 1, q ∈ (⌊Q/2⌋,Q], A, B,S,B
Output: updated S

1 for i← 1 to |A ∪ B| do
2 Draw a random target x from A ∪ B;
3 Draw a sample Q of Q agents from (A ∪ B)\{x} (or A ∪ B) using a weighted random sampling

(with or without replacement), with weights wz = 1 − β for agents in the same faction as x and
wz = β for the rest of the agents;

4 if B(x) = 1 then
5 if |{z : z ∈ Q ∧ S(z) = S(x)}| ≥ q then
6 if S(x) = 0 then
7 S(x)← S(x) + (−1)b, where b ∼ Bernoulli(1/2);

8 else
9 S(x)← 0;

10 else
11 if ∃s : |{z : z ∈ Q ∧ S(z) = s}| ≥ q ∧ |s − S(x)| = 1 then
12 S(x)← s;

13 return S;
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Algorithm 5: One Monte Carlo step of the dynamic model with anticonformity and conformity
without BC. A and B are the factions, i.e. subsets of agents, S : (A ∪ B) → {−1, 0, 1} maps agents
to their opinions, and B : (A ∪ B)→ {1, 0} maps agents to their behavior (1 for anticonformity and
0 for conformity). Note that in the case of the static approach p = |A ∪ B|−1 ∑

x∈A∪BB(x).
Input: Q > 1, q ∈ (⌊Q/2⌋,Q], A, B,S
Output: updated S

1 for i← 1 to |A ∪ B| do
2 Draw a random target x from A ∪ B;
3 Draw a sample Q of Q agents from (A ∪ B)\{x} (or A ∪ B) using a weighted random sampling

(with or without replacement), with weights wz = 1 − β for agents in the same faction as x and
wz = β for the rest of the agents;

4 if B(x) = 1 then
5 if |{z : z ∈ Q ∧ S(z) = S(x)}| ≥ q then
6 if S(x) = 0 then
7 S(x)← S(x) + (−1)b, where b ∼ Bernoulli(1/2);

8 else
9 S(x)← 0;

10 else
11 if |{z : z ∈ Q ∧ S(z) > S(x)}| ≥ q = 1 then
12 S(x)← S(x) + 1;
13 else if |{z : z ∈ Q ∧ S(z) < S(x)}| ≥ q = 1 then
14 S(x)← S(x) − 1;

15 return S;
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Algorithm 6: One Monte Carlo step of the static model with conformity without BC and confor-
mity with BC. A and B are the factions, i.e. subsets of agents, S : (A ∪ B) → {−1, 0, 1} maps
agents to their opinions, and B : (A ∪ B) → {1, 0} maps agents to their behavior (1 for con-
formity without BC and 0 for conformity with BC). Note that in the case of the static approach
p = |A ∪ B|−1 ∑

x∈A∪BB(x).
Input: Q > 1, q ∈ (⌊Q/2⌋,Q], A, B,S,B
Output: updated S

1 for i← 1 to |A ∪ B| do
2 Draw a random target x from A ∪ B;
3 Draw a sample Q of Q agents from (A ∪ B)\{x} (or A ∪ B) using a weighted random sampling

(with or without replacement), with weights wz = 1 − β for agents in the same faction as x and
wz = β for the rest of the agents;

4 if B(x) = 1 then
5 if |{z : z ∈ Q ∧ S(z) > S(x)}| ≥ q = 1 then
6 S(x)← S(x) + 1;
7 else if |{z : z ∈ Q ∧ S(z) < S(x)}| ≥ q = 1 then
8 S(x)← S(x) − 1;

9 else
10 if ∃s : |{z : z ∈ Q ∧ S(z) = s}| ≥ q ∧ |s − S(x)| = 1 then
11 S(x)← s;

12 return S;
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