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Stealing Accuracy: Predicting Day-ahead Electricity
Prices with Temporal Hierarchy Forecasting (THieF)

Arkadiusz Lipiecki, Kaja Bilińska, Nikolaos Kourentzes and Rafał Weron

Abstract—We introduce the concept of temporal hierarchy
forecasting (THieF) in predicting day-ahead electricity prices and
show that reconciling forecasts for hourly products, 2- to 12-
hour blocks, and baseload contracts significantly (up to 13%)
improves accuracy at all levels. These results remain consistent
throughout a challenging 4-year test period (2021-2024) in the
German power market and across model architectures, including
linear regression, a shallow neural network, gradient boosting,
and a state-of-the-art transformer. Given that (i) trading of block
products is becoming more common and (ii) the computational
cost of reconciliation is comparable to that of predicting hourly
prices alone, we recommend using it in daily forecasting practice.

Index Terms—Electricity price, temporal hierarchy forecasting
(THieF), forecast reconciliation, regression, machine learning

I. INTRODUCTION

OPERATIONAL decisions often require tailored short-
term forecasts that focus on different levels of detail

and granularity [1]. For instance, models for hourly products
in wholesale electricity markets can use different information
sets than those for baseload prices [2]. These forecasts may not
align, which can lead to suboptimal decisions. To cope with
this, the forecasts from each temporal level of the hierarchy
should be reconciled to be coherent.

The last decade has seen an unprecedented growth in
interest in forecast reconciliation [3] and the introduction of
temporal hierarchy forecasting (THieF) [4]. The latter can
be applied to any time series by means of non-overlapping
temporal aggregation – the predictions computed at all levels
of the hierarchy are combined to yield temporally reconciled,
accurate and robust forecasts. The concept is new in energy
forecasting and there are only a handful of publications on
predicting electric load [5], [6] or wind [7]–[9] and solar [10],
[11] generation. More importantly, temporal hierarchies have
not yet been applied to electricity price forecasting (EPF).
The only related study predicts aggregated demand and supply
curves by exploiting their intrinsic hierarchical structure [12],
but is not concerned with THieF nor EPF.

To fill this gap and provide market participants with a
universal tool to enhance predictions of hourly, block, and
baseload prices, we conduct an extensive study involving
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four classes of models and a 4-year test period from one
of the largest power markets in Europe (Germany, 2021-
2024). We find that temporal reconciliation leads to significant
improvements in terms of the mean absolute error (MAE) and
the root mean squared error (RMSE) across all considered
model classes and hierarchy levels: from 1.2% to 5.5% for
hourly and from 2.0 to 13.4% for baseload prices.

II. TEMPORAL HIERARCHIES AND RECONCILIATION

THieF can be understood in three steps: (i) construct non-
overlapping temporally aggregate time series (levels), (ii) gen-
erate base forecasts at these levels independently, (iii) reconcile
the base forecasts to combine the diverse information [4].
Temporal aggregation is a moving average that filters and
strengthens different aspects of the original signal, therefore
the combination of the base forecasts helps recover informa-
tion that would otherwise be difficult to estimate [13].

The summing matrix for a hierarchy of hourly prices and
block prices is given by S = [Sb

′ I24
′]′, where:

Sb =



1
24 . . . . . . . . . . . . . . . . . . . 1
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0 . . . 0 1
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12

1
12 . . . 1

12 0 . . . 0
...

0 0 1
2

1
2 0 . . . 0

1
2

1
2 0 . . . . . . . . . 0



(36,24)

(1)

and A′ is the transpose of A. Let pd be a column vector that
contains the hourly observations for day d, then Pd = Spd

implements step (i). Note that our formulation differs from [4]
by using the mean for the aggregation, as in [13].

Further, let P̄d be a vector of unreconciled base forecasts
→ step (ii). Following [4], THieF reconciliation is performed
by computing P̃d = S(STW−1S)−1STW−1P̄d, where W
is the covariance matrix of the base forecast errors, estimated
by shrinking the training sample errors [14] → step (iii). The
above reformulation of Sb only normalizes W and does not
impact P̃d. The reconciliation is updated daily.

Figure 1 illustrates the benefits of THieF. It plots the out-
of-sample eXtreme Gradient Boosting (XGB) base (→ dashed
orange) and reconciled (→ solid blue) forecasts at four aggre-
gation levels for 07.02.2021. THieF blends the information of
the base forecasts, and the relatively low bias of the 24-hour
base forecast helps to reduce the bias at all other levels.

III. COMPUTING BASE FORECASTS

To demonstrate the versatility of our approach, we generate
base forecasts using four models with four distinct architec-
tures: linear regression, a shallow neural network, gradient
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Fig. 1. Stylized example of the impact of THieF for the XBG model on one
test day (07.02.2021) and four levels of the hierarchy (1H, 4H, 8H, 24H).

boosting, and a transformer. The first two are often used as
benchmarks in EPF [15]–[19]. The third has been reported to
perform well in numerous forecasting competitions, including
M5 [20]. The fourth uses state-of-the-art transformer archi-
tecture, which is still rare in EPF [21]. It is AutoGluon’s
new tabular foundation model called Mitra, which excels on
datasets with less than 5,000 samples and 100 features [22].

All four models compute the electricity price forecast p̂d,h
for day d and block h as a function of 20 features, as in [19]:

p̂d,h = f
(
pd−1,h, ..., pd−7,h, p

min
d−1 , p

max
d−1 , L̂d,h, Ŵd,h,

APId−2, TTFd−2, D(1)
d , ..., D(7)

d

)
, (2)

where pd−i,h are the lagged prices of the same block in the last
seven days i = 1, ..., 7, pmin

d−1 and pmax
d−1 are the minimum and

maximum hourly prices of the previous day, L̂d,h and Ŵd,h are
the day-ahead load and wind generation forecasts for the target
block (source: ENTSO-E Transparency), APId−2 and TTFd−2

are the closing prices of the nearest to delivery monthly coal
(API2) and yearly natural gas futures (TTF) from day d − 2

(source: Investing.com), and D
(i)
d are the weekday dummies.

All models are trained independently for each block h using a
3-year window of past values; each day the window is rolled
forward by one day. Overall, we consider 60 blocks: 24 × 1H
(i.e., 24 one-hour blocks), 12 × 2H, 8 × 3H, 6 × 4H, 4 ×
6H, 3 × 8H, 2 × 12H, and 1 × 24H (i.e., baseload).

For more robust parameter estimation, following [15], be-
fore training the models, we preprocess the inputs using
the area hyperbolic sine transformation: asinh ((y − µ̂y)/σ̂y),
where µ̂y and σ̂y are the sample mean and sample standard
deviation of y estimated on the training set. More precisely,
pd−i,h for all i = 1, ..., 7 and each selected block h are
transformed with a common µ̂y and σ̂y calculated for the
vector [pd−1092,h, ..., pd−1,h]. The extremes pmin

d−1 and pmax
d−1

as well as the exogenous variables L̂d,h, Ŵd,h, APId−2 and
TTFd−2 are transformed independently, also using 3-year
vectors of past values; weekday dummies are not transformed.

1) AutoRegression with eXogenous inputs (ARX): This ex-
pert – in the sense of [23] – model is estimated via ordinary
least squares (OLS) and uses the same inputs as [19] to allow
for direct comparisons; the dataset is identical.

2) Nonlinear ARX (NARX): The nonlinear counterpart of
ARX approximates f(·) in Eq. (2) with a shallow feedforward

neural network using the series-parallel architecture [24]. As
in [16], the hidden layer consists of 5 neurons and uses
hyperbolic tangent activation, with a linear function in the
output layer. The weights are calculated in Matlab R2025a
using the Levenberg-Marquadt algorithm with early stopping
based on a 10% validation set. To mitigate the uncertainty of
parameter estimation, the output is clipped to [−3, 3] before
applying the inverse transformation, i.e., the hyperbolic sine,
and the final p̂d,h is obtained by training the network 10 times
for each d and h, and averaging the 10 price forecasts; no
hyperparameter optimization is performed.

3) EXtreme Gradient Boosting (XGB): The third model
is an ensemble of gradient-boosted decision trees (GBDT)
[25]. We use eXtreme GBDT implemented in the XGBoost
(v1.7) Python package [26], with MSE as the loss function for
training and hyperparameter optimization. The latter is carried
out 10 times at the beginning of each year (independently for
each block h) using 3 years of past data and Bayesian se-
quential optimization [27] with early stopping for the number
of trees (≤1000).1 p̂d,h is obtained by averaging the forecasts
generated using these 10 sets of hyperparameters.

4) Mitra: The final forecaster is Amazon’s state-of-the-art
tabular foundation model released with AutoGluon v1.4 in July
2025, based on a 12-layer 72 million-parameter transformer
architecture [22]. Since it is pre-trained on purely synthetic
data, evaluating its performance on historic time series does
not pose data contamination issues. Although Mitra is not
specifically tailored to time series, our forecasting task requires
only one-step-ahead predictions, with Eq. (2) being equivalent
to a tabular regression problem. We generate forecasts in a
zero-shot mode, relying on a model pre-trained for regression
tasks. At each timestep, the training set is fed as support
examples for in-context learning. Mitra then generates a single
prediction based on the input variables acting as a query.

IV. EMPIRICAL RESULTS

To ensure a sound assessment of the THieF approach, we
consider one of the largest power markets in Europe (EPEX-
DE, Germany) and a dataset that spans 7 years (05.01.2018-
31.12.2024); the same as in [19]. The first 1092 days (until
31.12.2020) are the initial training window; each day it is
rolled forward by 24 hours. The remaining 4-year period
(starting 01.01.2021) is a challenging test set that includes
the COVID-19 pandemic (the first day of hard lockdown in
Germany was 15.12.2020), the Russian invasion of Ukraine
(24.02.2022) and the soaring natural gas prices (Q4 2021-Q4
2022), as well as the appearance of negative price spikes due
to low demand and high renewable generation (e.g., on Sunday
02.07.2023 at 3 p.m. the price dropped to −500 EUR/MWh).

In Table I we report the mean absolute errors (MAE) and the
root mean squared errors (RMSE) of the four models over the
entire test period, as well as the respective gains from forecast
reconciliation (in %). The latter are all significant at the 5%

1The search ranges are: max depth ∈ [2, 10], learning rate ∈ [0.0001, 1.0]
(log scale), subsample ∈ [0.5, 1.0], min child weight ∈ [0, 10], γ ∈
[0.0, 0.5], λ ∈ [0.001, 10.0] (log scale), and α ∈ [0.001, 10.0] (log scale).
The remaining parameters use default values.



3

TABLE I
THE MAE AND RMSE ERRORS OF THE BASE FORECASTS FOR SELECTED
HIERARCHY LEVELS (1H, 4H, 8H, 24H) OVER THE 4-YEAR TEST PERIOD

AND THE RESPECTIVE GAINS FROM RECONCILIATION (IN %).

Level Model MAE %gain RMSE %gain

1H

ARX 26.93 2.8% 39.83 2.7%
NARX 23.06 3.3% 35.62 2.8%
XGB 23.34 4.4% 37.05 5.5%
Mitra 21.37 1.2% 33.31 1.2%

4H

ARX 25.65 3.1% 37.50 3.1%
NARX 21.75 5.0% 33.27 4.6%
XGB 22.01 5.8% 34.25 6.0%
Mitra 20.13 3.7% 30.87 3.5%

8H

ARX 24.37 2.9% 35.59 3.5%
NARX 20.54 5.5% 31.20 4.8%
XGB 21.07 6.8% 32.94 8.2%
Mitra 19.45 6.3% 29.34 5.5%

24H

ARX 20.92 2.0% 30.29 3.4%
NARX 17.99 8.2% 27.24 7.9%
XGB 18.80 11.7% 29.50 13.4%
Mitra 16.56 8.1% 24.81 8.5%

level, as measured by the multivariate variant of the Diebold-
Mariano test [23]; this is true not only for the four hierarchy
levels (1H, 4H, 8H, 24H) in Table I, but for all considered lev-
els, see Sec. III. The fact that the results are consistent across
architectures ranging from parsimonious linear regression with
20 parameters to a state-of-the-art transformer with up to 72
million parameters is a strong argument in favor of using the
THieF approach in day-ahead EPF.

V. CONCLUSIONS

We demonstrate the benefit of temporal hierarchy forecast-
ing (THieF) for predicting electricity prices. We evidence
this in the German power market, using a variety of base
forecasting methods with increasing complexity and diverse
modeling assumptions. We found a consistent improvement in
all setups (up to 13%; on average above 5% for both MAE and
RMSE), with increasing benefits for longer forecast horizons.

There are various extensions that stem from this work.
We applied the same base forecast to all aggregation levels,
however, more diverse model selection can be beneficial, better
leveraging the properties of each level, and thus minimizing
computational overheads. Likewise, investigating the impact of
THieF on probabilistic EPF is a useful extension. Beyond any
accuracy gains, THieF provides reconciled forecasts across all
levels, which can support the alignment of different decisions
and potentially new strategies in energy markets. These are
fruitful avenues for future research.
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