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Abstract
Discontinuous phase transitions are closely linked to tipping points, critical mass effects, and

hysteresis, phenomena that have been confirmed empirically and recognized as highly important

in social systems. The multistate q-voter model, an agent-based approach to simulate discrete

decision-making and opinion dynamics, is particularly relevant in this context. Previous studies

of the q-voter model with anticonformity on complete graphs uncovered a counterintuitive result.

Changing the model formulation from the annealed (homogeneous agents with varying behavior) to

quenched (heterogeneous agents with fixed behavior) produces discontinuous phase transitions. This

is contrary to the common expectation that quenched heterogeneity smooths transitions. To test

whether this effect is merely a mean-field artifact, we extend the analysis to random graphs. Using

pair approximation and Monte Carlo simulations, we show that the phenomenon persists beyond

the complete graph, specifically on random graphs and Barabási-Albert scale-free networks. The

novelty of our work is twofold: (i) we demonstrate for the first time that replacing the annealed with

the quenched approach can change the type of phase transitions from continuous to discontinuous

not only on complete graphs but also on sparser networks, and (ii) we provide pair-approximation

results for the multistate q-voter model with competing conformity and anticonformity mechanisms,

covering both quenched and annealed cases, which had previously been studied only in binary

models.

I. INTRODUCTION

Discontinuous phase transitions in models of opinion dynamics are of particular interest

[1–9] because they are often associated with tipping points, critical mass phenomena, and

social hysteresis [10]. The q-voter model [11], which can be also interpreted as the binary-

choice dynamics [12] provide a simple yet powerful framework to study such effects. When

competing mechanisms, such as conformity and independence, or conformity and anticonfor-

mity (known also as the contrarian behavior [13]), interact, they can drive phase transitions

between consensus, polarization, or disordered states. One of the most important factors

influencing these transitions is how the mechanisms are implemented, either through an
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annealed approach, where individual preferences change over time, or a quenched approach,

where preferences remain fixed [14].

In the binary q-voter model with anticonformity, only continuous phase transitions have

been observed for both the annealed and quenched approaches. While pair approximation

(PA) suggested the possibility of a discontinuous transition, computer simulations demon-

strated that this change does not occur, indicating that it is merely an artifact of the PA

method [15]. In contrast, in the q-voter model with independence, the quenched approach

either eliminates the discontinuous transition in the binary case [15] or smooths it in mul-

tistate versions [16], whereas such transitions are observed under annealed dynamics. This

behavior is consistent with well-established results from statistical physics, where quenched

heterogeneity typically weakens or destroys discontinuous phase transitions [17–21].

The unexpected behavior appears when the q-voter model with anticonformity is gen-

eralized to multiple states. In this case, it has recently been shown that switching from

annealed to quenched disorder does not eliminate discontinuities, but instead induces them:

in the annealed approach the transition is continuous, whereas under the quenched approach

it becomes discontinuous [22]. This inversion of the usual quenched-annealed relationship

poses a conceptual puzzle, as it contradicts established expectations from statistical physics.

One natural concern is that this effect might be an artifact of the mean-field approxi-

mation, since the previous study was restricted to complete graphs. To address this, in the

present work, we extend the analysis of the multistate q-voter model with anticonformity

beyond complete graphs. Using PA and Monte Carlo simulations, we investigate the model

on random regular graphs and Barabási–Albert scale-free networks.

Our results show that the puzzling behavior persists beyond complete graphs: while the

annealed approach consistently produces continuous transitions, the quenched approach, for

the q-voter model with more than two states, yields discontinuous transitions accompanied

by hysteresis. Thus, this phenomenon is not a mean-field artifact, but a genuine effect of

heterogeneity introduced by quenched anticonformity.

The novelty of this paper is two-fold. First, to the best of our knowledge, this is the

first study that shows that replacing the annealed with the quenched approach can change

the type of phase transition on random graphs from continuous to discontinuous. Second,

for the first time, we present PA results for the multistate q-voter model with competing

mechanisms, specifically conformity and anticonformity. Moreover, since these competing
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mechanisms can be implemented in both quenched and annealed forms, we provide PA

results for both cases. Previously, such analyses were performed only for binary models

[15, 23, 24].

II. MODEL

We consider a system of N agents, also called voters, positioned at the vertices (nodes)

of an arbitrary graph with N vertices. Each vertex v ∈ {1, . . . , N} is occupied by exactly

one voter, and each voter is assigned a dynamical variable sv(t) representing its state, which

can take one of S possible values:

sv(t) = s, s ∈ {1, . . . , S}. (1)

This state can be interpreted in various ways (opinion, belief, attitude, etc.) [25]. In this

model, we specifically treat it as a categorical choice among S alternatives, corresponding to

discrete choices in which a decision-maker selects one option from a finite set [26]. Although

the alternatives are labeled 1, . . . , S, this labeling is purely for enumeration; there is no

ordering or ’distance’ between them, unlike Likert scales or models where neighboring states

matter [27].

We define agents as neighbors when they occupy vertices that are connected by an edge

(link). The opinion of a target (focal) voter can change when influenced by a unanimous

group of q neighbors. If, within such a group, the opinion of at least one agent differs from the

others, then the group does not exert any influence on the target. As in some other versions

of the q-voter model, the influence group, also called the q-panel, the source of influence,

or simply a source, is formed by drawing a group of q agents from the neighborhood of the

target voter without repetition [15, 22, 23, 28, 29] . Note that in the original q-voter model

[11], and many later modifications of the model [30–34], repetitions are allowed.

Following [22], we consider two types of behaviors, describing the response of a voter

to the influence of the q-panel: conformity and anticonformity. If a target voter acts as a

conformist, it adopts the state of a unanimous q-panel, while an anticonformist flips to a

randomly selected state (other than its current state) provided that all the voters in the

q-panel are in the same state as the target.

Within an annealed approach also referred to as annealed disorder, the behavior of each
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Annealed disorder

target target

target

1/21/2

p 1 – p

Quenched disorder

1/21/2

target target

FIG. 1. Symbolic scheme of the updating procedure in the annealed (left panel) and quenched (right

panel) three-state q-voter model with anticonformity, where ▲, •, and ■ denote different states,

black-filled voters mark anticonformists, white-filled voters mark conformists. In the annealed

version the voters are gray to highlight that their behavior is randomly decided during an update.

The neighbors chosen for the q-panel are placed inside gray ellipses. In this example, q = 2.

voter is independent at each time step: whether a voter acts as an anticonformist is a

Bernoulli trial with success probability p, and otherwise the voter acts as a conformist

with complementary probability (1 − p). Hence, in the annealed approach, all voters are

homogeneous with respect to behavior: every voter is equally likely to act as a conformist

or an anticonformist. In the case of the quenched approach, also referred to as quenched

disorder, the behavior of each voter is described by a static variable (trait):

ηv = η, η ∈ {•, ◦} ≡ {anticonformist,conformist}. (2)

It is still a Bernoulli random variable with probability p, but it is drawn only once in

the initial state and then remains fixed over time. Therefore, the expected number of

anticonformists is pN , and the expected number of conformists is (1− p)N .

As usual, we use random sequential updating. A unit of time (t → t + 1) is defined as

N elementary updates, which corresponds to one Monte Carlo step (MCS). An elementary

update (schematically shown in Fig. 1) consists of the following steps:

1. Randomly select a target voter v.

2. Randomly select a group of q neighbors of v, without repetitions (the q-panel).

3. Check whether all q neighbors are in the same state, i.e., whether the q-panel is

unanimous. If the q-panel is unanimous, proceed to step 4; otherwise, nothing happens.
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4. Update the state of the target voter v according to the version of the model:

(a) Annealed: with probability p, the target voter v adopts randomly one of the

S−1 states different from that of the q-panel (anticonformity), and with comple-

mentary probability 1− p it adopts the same state as the q-panel (conformity).

(b) Quenched: if the target voter v is an anticonformist, it adopts randomly one of

the S − 1 states different from that of the q-panel; if it is a conformist, it adopts

the same state as the q-panel.

III. PAIR APPROXIMATION

In previous work, the mean-field approximation (MFA) was applied to the multistate

q-voter model with anticonformity, both in the annealed and quenched formulation, and

compared with simulations on a complete graph [16]. Although MFA is relatively simple to

derive and solve, it often becomes inaccurate beyond the complete graph because it ignores

correlations between nodes. Here we will use PA, which is a mean-field-like method that

improves upon MFA by incorporating dynamical correlations at the pairwise level [35].

PA has been successfully applied to various binary-state dynamics [36], including the

voter model [37], several versions of the binary q-voter model [8, 15, 23, 24, 33], and more

recently to a multistate q-voter model [34]. In the latter work, agents could only conform

to their neighbors and the focus was on ordering dynamics. The model studied in [34] does

not exhibit phase transitions, as there is no competition between different social response

mechanisms. Furthermore, all agents are, by definition, identical in their responses to social

influence, since only one type of response is allowed. Consequently, the distinction between

quenched and annealed heterogeneity of responses is not applicable in this context.

In this paper, for the first time, we obtain PA results for the multistate q-voter model with

competing mechanisms. Furthermore, since these competing mechanisms can be introduced

in both quenched and annealed forms, we present PA results for both cases.

The overarching goal of approximating the dynamics of the q-voter model is to obtain

an analytically or, at least numerically traceable evolution equations for the concentration

of voter classes, where the class of a voter v represents its state sv(t) and type ηv. The
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concentration of voters in class (s, η) is defined as

cs,η(t) :=
|v ∈ {1, ..., N} : sv(t) = s ∧ ηv = η|

N
. (3)

In the case of the quenched disorder the type η corresponds to behavior, i.e. conformist ◦

or anticonformist •, while for the annealed disorder the type is omitted and the class of a

voter is only described by its state:

cs(t) :=
|v ∈ {1, ..., N} : sv(t) = s|

N
. (4)

In the remainder of the paper, we will use s and σ to denote state values, while η and β

will correspond to type values. Both cs(t) and cs,η(t) are, in principle, random variables.

However, in the N → ∞ limit, they converge to their expected values. Therefore, for large

systems, we can treat cs(t) and cs,η(t) as deterministic variables, which evolution is given by

ordinary differential equations (ODEs). Thus, we can describe the time evolution of voter

class concentrations with the following equation:

dcs,η
dt

=
∑
s′

cs′,η(t)f
s′→s
η − cs,η(t)f

s→s′

η , (5)

where f s→s′
η is the probability that a voter in state s and type η flips its state to s′. The

coarsest approximation is based on the assumption that the state concentrations in the

neighborhood of each voter are equivalent to the global ones, which corresponds to the

mean-field approximation. Within MFA, the system of voters can be fully described by

tracking only the concentration of each voter class. The mean-field flipping probabilities for

the annealed and quenched disorders are, respectively, given by:

f s→s′ = (1− p)c′qs +
p

S − 1
cqs, (6)

f s→s′

η = δη◦c
′q
s +

δη•
S − 1

cqs, (7)

where δij is the standard Kronecker delta. However, as stated at the beginning of this sec-

tion, the applicability of the mean-field approximation is very limited, since its assumptions

correspond to a complete graph topology (all-to-all interactions). Therefore, in this paper

we use the pair approximation, which allows us to study the q-voter dynamics on sparse

networks with negligible clustering.

Within PA, we assume that the state of each neighbor of a given voter v is an independent

and identically distributed (i.i.d.) random variable, conditioned only on the class of voter v.
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Hence, the flipping probabilities for the annealed and quenched disorders, respectively, can

be expressed in the PA regime as:

f s→s′ = (1− p)(P [s′|s])q + p

S − 1
(P [s|s])q, (8)

f s→s′

η = δη◦(P [s′|(s, η)])q + δη•
S − 1

(P [s|(s, η)])q, (9)

where P [s|s′] and P [s|(s′, η)] are the probabilities of drawing a neighbor in state s given

that the class of the focal voter is s in the annealed approach and (s, η) in the quenched

approach. For the sake of calculations, we employ the notion of directed edges, artificially

replacing each undirected edge in the given graph with two oppositely directed edges, fol-

lowing the convention introduced in [15]. Thus, the process of randomly selecting a neighbor

in class (s′, η′) of the focal voter is equivalent to drawing an out-edge starting at the focal

voter’s vertex and ending at a vertex with a voter in class (s′, η′). By assuming that such

draws are i.i.d. and conditional only on the class of the focal voter, we approximate their

probabilities using the concentration of edges linking different voter classes.

A. Annealed disorder

c1 c2

c3

e12

e
11e 1

3

e11 e22

e33

FIG. 2. Schematic representation of relevant variables tracked in the 3-state q-voter model with

annealed disorder.

In the case of annealed disorder, there are S distinct voter classes, as the class of a voter

is equivalent to its state. We will approximate the probabilities P [s′|s] in Eq. (8) using the

concentration of edge classes:

P [s′|s] = ess′∑
σ esσ

:= θs
′

s , (10)
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where ess′ := Ess′/E; E is the total number of directed edges in the graph (twice the number

of edges in the underlying undirected graph) and Ess′ is the number of directed edges starting

at a voter in state s and ending at a voter in state s′. Of course Ess′ and therefore ess′ , can

change over time, so we should actually write Ess′(t) and ess′(t), but for the sake of brevity

we omit the time dependence from the notation. Analogously to state concentrations, we

assume that edge concentrations ess′(t) convergence to their expected values. There are in

total S(S − 1)/2 + S distinct edge classes, e.g., 6 classes for s = 3, as shown in Fig. 2.

Since the underlying graphs are undirected, ess′ = es′s always holds. Furthermore, only

S(S − 1)/2 + S − 1 edge concentrations are independent, as their sum must equate to one:∑
s

∑
s es,s′ = 1.

Introducing edge concentrations was helpful to approximate the probability of selecting

neighbors in specific states, but we now need to track the time evolution of ess′ . We can

write the general equation for the time derivatives of the concentration of edges ess′ :

dess′

dt
=

1

⟨k⟩
∑
σ ̸=σ′

cσ
∑
k

P (k|σ)fσ→σ′
(k)∆Ess′

∣∣σ→σ′
(k), (11)

where ⟨k⟩ is the global average node degree, ∆Ess′
∣∣σ→σ′

is the change in Ess′ occurring when

a voter flips its state from σ to σ′, given its neighborhood vector k. The components of k

are the numbers of neighbors in each state, i.e. k = [k1, ..., kS] and k =
∑

s ks is the node

degree (total number of neighbors). When a voter flips from σ to σ′, all of its outgoing edges

change from (σ, ·) to (σ′, ·) and all of its incoming edges change from (·, σ) to (·, σ′), where

· denotes an arbitrary state. The number of neighbors in each state directly corresponds

to the number of outgoing edges ending at this state and the number of incoming edges

originating at this state (because every edge has an oppositely directed counterpart). Hence

the change of Ess′ during a single voter update is given by

∆Ess′
∣∣σ→σ′

(k) = ks′(δσ′,s − δσ,s) + ks(δσ′,s′ − δσ,s′). (12)

For example, when a voter in state σ = 1 changes its state to any other state σ′, the number

of edges E11 between voters in state 1 changes by ∆E11

∣∣1→σ′
(k) = −2k1. The flipping

probability expressed in terms of the neighborhood vector, fσ→σ′
(k), takes the form:

fσ→σ′
(k) = (1− p)

kσ′ !(k − q)!

k!(kσ′ − q)!
1kσ′≥q +

p

S − 1

kσ!(k − q)!

k!(kσ − q)!
1kσ≥q. (13)
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Notice that the flipping probability used in the calculation of edge concentrations is different

from the one used in Eq. (8). This stems from the fact that tracking the change in the num-

ber of edges requires information about the states of all neighbors. The flipping probability

thus needs to be conditioned on this information, since the event of constructing a q-panel

is dependent on the neighborhood vector. To arrive at a usable form of Eq. (11) we need

to calculate the innermost sum of this equation. Since we assumed that the states of the

neighbors are i.i.d. the probability that a voter in state σ has kσ′ neighbors in state σ′ is of

the binomial form:

P (kσ′ |σ, k) =
(

k

kσ′

)
(θσ

′

σ )kσ′ (1− θσ
′

σ )k−kσ′ . (14)

Plugging Eqs. (13) and (12) into the innermost sum of Eq. (11), we arrive at:∑
k

P (k|σ)fσ→σ′
(k)∆Eσ→σ′

ss′ (k) =
∑
k

P (k|σ)

×
(
(1− p)

kσ′ !(k − q)!

k!(kσ′ − q)!
1kσ′≥q +

p

S − 1

kσ!(k − q)!

k!(kσ − q)!
1kσ≥q

)
︸ ︷︷ ︸

R1

×
(
ks′(δσ′,s − δσ,s) + ks(δσ′,s′ − δσ,s′)

)
︸ ︷︷ ︸

R2

. (15)

After performing multiplication of terms R1 and R2 from Eq. (15), we end up with terms

that belong to one of the two types (omitting (1 − p) and p/(S − 1) factors), the first one

for s = s′:

∑
k

P (k|σ)ks!(k − q)!

k!(ks − q)!
1ks≥qks =

∑
k∈N

P (k|σ)
k∑

ks=q

P (ks|σ, k)
ks!(k − q)!

k!(ks − q)!
ks

=
∑
k∈N

P (k|σ)
k∑

ks=q

(
k

ks

)
(θsσ)

ks (1− θsσ)
k−ks ks!(k − q)!

k!(ks − q)!
ks

=
∑
k∈N

P (k|σ) (θsσ)
q [(k − q) θsσ + q] = (θsσ)

q [(⟨k⟩σ − q) θsσ + q] (16)

and the other for s ̸= s′:

∑
k

P (k|σ)ks!(k − q)!

k!(ks − q)!
1ks≥qks′ =

∑
k∈N

P (k|σ)
k∑

ks=q

P (ks|σ, k)
ks!(k − q)!

k!(ks − q)!

k−ks∑
ks′=0

P (ks′|σ, k, ks)ks′

=
∑
k∈N

P (k|σ)
k∑

ks=q

(
k

ks

)
(θsσ)

k
s (1− θsσ)

k−ks ks!(k − q)!

k!(ks − q)!
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×
k−ks∑
ks′=0

(
k − ks
ks′

)(
θs

′
σ

1− θsσ

)k′s (
1− θs

′
σ

1− θsσ

)k−ks−ks′

ks′︸ ︷︷ ︸
=(k−ks)θs

′
σ /(1−θsσ)

(17)

=
∑
k∈N

P (k|σ) θs
′

σ

1− θsσ
(θsσ)

q k −
∑
k∈N

P (k|σ) θs
′

σ

1− θsσ
(θsσ)

q [(k − q) θsσ + q] = θs
′

σ (θsσ)
q (⟨k⟩σ − q) .

Now, plugging Eqs (16) and (18) to Eq. (11), we obtain the final evolution equations for

edges in annealed systems:
dess′

dt
=

1

⟨k⟩
∑
σ ̸=σ′

cσ
∑
k

P (k|σ)fσ→σ′
(k)∆Eσ→σ′

ss′ (k) =
1

⟨k⟩
∑
σ ̸=σ′

cσ

[
(1− p)

(
θσ

′

σ

)q
×
{(

[⟨k⟩σ − q] θs
′

σ + qδσ′,s′

)
(δσ′,s − δσ,s) + ([⟨k⟩σ − q] θsσ + qδσ′,s) (δσ′,s′ − δσ,s′)

}
+

p

S − 1
(θσσ)

q
{(

[⟨k⟩σ − q] θs
′

σ + qδσ,s′
)
(δσ′,s − δσ,s)

+ ([⟨k⟩σ − q] θsσ + qδσ,s) (δσ′,s′ − δσ,s′)
}]

. (18)

Where the average node degree ⟨k⟩σ of voters in state σ can be inferred from the state and

edge concentrations:

⟨k⟩σ =

∑
σ′ eσσ′

cσ
⟨k⟩. (19)

The formulas for time derivatives of state concentrations cs are obtained by plugging Eqs (8)

and (10) into Eq. (5):
dcs
dt

=
∑
σ ̸=σ′

(δsσ′ − δsσ)cσ

[
(1− p)

(
θσ

′

σ

)q
+

p

S − 1
(θσσ)

q

]
. (20)

B. Quenched disorder

If the q-voter model is implemented with the quenched disorder, each voter v is ascribed

with a quenched variable ηv. Thus, given S possible states, there are in total 2S voter

classes, as each of the voter can be either a conformist ◦ or an anticonformist •. This leads

to 2S2 + S different edge classes, e.g. 21 edge variables for s = 3, as shown in Fig. 3. which

concentrations are described by variables eηη
′

ss′ := Eηη′

ss′ /E, where Eηη′

ss′ = Eη′η
s′s is the number

of directed edges from a voter in state s of type η to a voter in state s′ and of type η′. The

probability P [(s′, η′)|(s, η)] that a randomly selected neighbor of a voter (s, η) is (s′, η′) can

be expressed as:

P [(s′, η′)|(s, η)] = eηη
′

ss′∑
σ e

η◦
sσ + eη•sσ

:= θs
′η′

sη , (21)
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c1,◦

c2,◦

c3,◦

c1,•

c2,•

c3,•

e◦◦11

e
◦◦ 12

e◦•11

e ◦•13

e◦◦22

e ◦◦23

e
◦•
21

e◦◦33

e
◦• 31

e
◦•
32

e◦•33

e••11

e ••12

e••22

e
•• 23

e••33

e◦•22

e ◦•12

e ••1
3

e ◦◦1
3

e ◦•23

FIG. 3. Schematic representation of relevant variables tracked in the 3-state q-voter model with

conformists ◦ and anticonformists • in quenched disorder.

and if only the state of the neighbor is of interest, we can write:

P [s′|(s, η)] = θs
′◦

sη + θs
′•

sη := θs
′

sη. (22)

Since the fraction (or its expected value) of conformists and anticonformists in the system

is fixed and given by

c◦ :=
∑
s

cs,◦ = (1− p),

c• :=
∑
s

cs,• = p, (23)

the number of independent edge concentrations can be reduced using the following condi-

tions:

e◦◦ :=
∑
s

∑
s′

e◦◦ss′ = (1− p)2, (24)

e◦• :=
∑
s

∑
s′

e◦•ss′ = (1− p)p, (25)

e•• :=
∑
s

∑
s′

e••ss′ = p2, (26)

leading to 2S2 + S − 3 independent edge concentrations. We can formulate the general

equation for the evolution of edge concentrations as

deηη
′

ss′

dt
=

1

⟨k⟩
∑

β∈{◦,•}

∑
σ ̸=σ′

cσ,β
∑
k

P (k|σ, β)fσ→σ′

β (k)∆Eηη′

ss′

∣∣σ→σ′

β
(k). (27)

In the presence of quenched disorder, the flipping probabilities are now dependent on the

state s as well as the type η of the target voter:

f s→s′

η (k) = δη◦
ks′ !(k − q)!

k!(ks′ − q)!
1ks′≥q + δη•

1

S − 1

ks!(k − q)!

k!(ks − q)!
1ks≥q, (28)
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with the neighborhood vector k = [k•
1, ..., k

•
S, k

◦
1, ..., k

◦
S], where k•

s and k◦
s are respectively the

number of anticonformist and conformist neighbors in state s, and ks = k•
s + k◦

s is the total

number of neighbors in state s.

The elementary change in the number of edges Eηη′

ss′ occurring when a voter of type β and

neighborhood vector k flips its state from σ to σ′:

∆Eηη′

ss′

∣∣σ→σ′

β
(k) = δβηk

η′

s′ (δσ′s − δσs) + δβη′k
η
s (δσ′s′ − δσs′). (29)

The probability that a voter in class (σ, β) with k total neighbors has kη
s neighbors in state

s and of type η is

P (kη
s |(σ, β), k) =

(
k

kη
s

)
(θs,ησβ )

kηs (1− θs,ησ,β)
k−kηs . (30)

Now, using Eqs (28), (29) and (30) we can express the innermost sum of Eq. (27) as∑
k

P (k|σ, β)fσ→σ′

β (k)∆Eηη′

ss′

∣∣σ→σ′

b
(k) =

∑
k

P (k|σ)

×
(
δβ◦

kσ′ !(k − q)!

k!(kσ′ − q)!
1kσ′≥q + δβ•

1

S − 1

ks!(k − q)!

k!(ks − q)!
1ks≥q

)
︸ ︷︷ ︸

R1

×
(
δβηk

η′

s′ (δσ′s − δσs) + δβη′k
η
s (δσ′s′ − δσs′)

)
︸ ︷︷ ︸

R2

. (31)

To obtain usable equations, we need to simplify the terms that arise after multiplying R1

with R2 in Eq. (31), they can be either equivalent to (for s = s′):∑
k

P (k|(σ, β))ks!(k − q)!

k!(ks − q)!
1ks≥qk

η
s

∑
k∈N

P (k|(σ, β)×
k∑

ks=q

(
k

ks

)
(θsσ)

k
s (1− θsσ)

k−ks ks!(k − q)!

k!(ks − q)!

×
ks∑

kηs=0

(
ks
kη
s

)(
θsησ
θsσ

)kηs (
1− θsησ

θsσ

)ks−kηs

kη
s︸ ︷︷ ︸

=ksθ
sη
σ /θsσ

=
∑
k∈N

P (k|(σ, β)θ
sη
σ

θsσ
(θsσ)

q [(k − q) θsσ + q]

= θsησ (θsσ)
q−1 [(⟨k⟩σ,β − q) θsσ + q] (32)

or (for s ̸= s′):∑
k

P (k|(σ, β))ks!(k − q)!

k!(ks − q)!
1ks≥qk

η
s′ =

∑
k∈N

P (k|(σ, β)
k∑

ks=q

(
k

ks

)(
θsβ
)k
s

(
1− θsβ

)k−ks ks!(k − q)!

k!(ks − q)!

k−ks∑
kη
s′=0

(
k − ks
kη
s′

)(
θs

′η
β

1− θsβ

)kηs (
1−

θs
′η

β

1− θsβ

)k−ks−kη
s′

kη
s′︸ ︷︷ ︸

=(k−ks)θ
s′η
β /(1−θsβ)

13



=
∑
k∈N

P (k|(σ, β)
θs

′η
β

1− θsβ

(
θsβ
)q

(k −
[
(k − q) θsβ + q

]
) = θs

′η
β

(
θsβ
)q

(⟨k⟩σ,β − q) . (33)

This finally yields a set of equations describing the time evolution of edge-class con-

centrations, which enables a numerical analysis of the quenched system within the pair

approximation:

deηη
′

ss′

dt
=

1

⟨k⟩
∑

β∈{◦,•}

∑
σ ̸=σ′

cσ,β

[
δβ◦
(
θmσ,β
)q {

δβ,η

(
[⟨k⟩σ,β − q] + q

θs
′

σ,β

δσ′s′

)
θs

′η′

σ,β (δσ′s − δσs)

+ δβη′
(
[⟨k⟩σ,β − q] + q

θsσ,β
δσ′s

)
θsησ,β (δσ′s′ − δσs′)

}
+ δβ•

(
θσσ,β
)q {

δβη

(
[⟨k⟩σ,β − q] + q

θs
′

σ,β

δσs′

)
θs

′η′

σ,β (δσ′s − δσs)

+ δβη′
(
[⟨k⟩σ,β − q] + q

θsσ,β
δσs

)
θsησ,β (δσ′s′ − δσs′)

}]
. (34)

In the quenched scenario, the average node degree ⟨k⟩σ,β of voters in state σ and type β

given by:

⟨k⟩σ,β =

∑
s e

β◦
σs + eβ•σs
cσ,β

⟨k⟩. (35)

For completeness, we also provide the explicit formula for the evolution of voter class

concentrations cs,η, obtained from specifying the general form Eq. (5) with Eqs (9) and (22):

dcs,η
dt

=
∑
σ ̸=σ′

(δsσ′ − δsσ)cσ,η

[
δη◦

(
θσ

′

σ,η

)q
+

δη•
S − 1

(
θσσ,η
)q]

. (36)

C. State-degree correlation

Having calculation-ready formulas for the time derivatives of edge class concentrations as

well as voter class concentrations, Eqs. (18) and (20) for the annealed approach, Eqs. (34)

and (36) for the quenched approach, we can describe the evolution of the system within the

pair approximation. In both the annealed and quenched disorder, the evolution does not

depend on the degree distribution, but only on the average node degree within each voter

class, described with Eqs. (19) and (35). It should be noted that the result showing that the

degree distribution does not influence the dynamics has previously been obtained for binary

q-voter models with annealed independence [23], as well as with quenched independence and

quenched anticonformity [38]. However, such a simplification, where the outcome depends

14



only on the average degree, arises only in the model where neighbors in the q-panel are

selected without repetitions. If repetitions are allowed, the dynamical equations within PA

depend on the full degree distribution [34].

We will now show that if initially there are no correlations between the average node

degree and the class of the voter, i.e., ⟨k⟩s,η = ⟨k⟩ for every s and η, such correlations will

not arise in the system, generalizing the result for the binary version of the model [15].

Here, we present calculations for the quenched scenario, but analogous considerations can

be conducted for the simpler annealed case. Let us start by considering how the numerator

of Eq. (35) changes w.r.t time:

d

dt

( ∑
s′

∑
η′

eηη
′

ss′

)
=

1

⟨k⟩
∑
s′

∑
η′

∑
β

∑
σ ̸=σ′

cσ,βδβ,◦

(
θσ

′

σ,β

)q
×
{
δβ,β

[
(⟨k⟩σ,β − q) + q

θs
′

σ,β

δσ′,s′

]
θs

′η′

σ,β (δσ′,s′ − δσ,s′)

+ δβ,η′

[
(⟨k⟩σ,β − q) + q

θs
′

σ,β

δσ′,s′

]
θs

′β
σ,β (δσ′,s′ − δσ,s′)

}
+ (δβ,•...)

=
1

⟨k⟩
∑
β

∑
σ ̸=σ′

cσ,βδβ,◦

(
θσ

′

σ,β

)q {
δβ,β

∑
s′

∑
η′

[
(⟨k⟩σ,β − q) + q

θs
′

σ,β

δσ′,s′

]
θs

′,η′

σ,β (δσ′,s′ − δσ,s′)

+

[
(⟨k⟩σ,β − q) + q

θs
′

σ,β

δσ′,s′

]
θs

′,β
σ,β

∑
s′

(δσ′,s′ − δσ,s′)︸ ︷︷ ︸
=0

∑
η′

δβ,η′
}
+ (δβ,•...)

=
1

⟨k⟩
∑
β

∑
σ ̸=σ′

cσ,βδβ,◦

(
θσ

′

σ,β

)q
δβ,β(δσ′,s′ − δσ,s′)

×
[
(⟨k⟩σ,β − q)

∑
s′

∑
η′

θs
′,η′

σ,β︸ ︷︷ ︸
=1

+q
∑
s′

δσ′,s′

∑
η′

θs
′,η′

σ,β

θs
′

σ,β︸ ︷︷ ︸
=1

]
+ (δβ,•...)

=
1

⟨k⟩
∑
β

∑
σ ̸=σ′

cσ,βδβ,◦

(
θσ

′

σ,β

)q
(δσ′,s′ − δσ,s′)⟨k⟩σ,β + (δβ,•...)

=
1

⟨k⟩
∑
β

∑
σ ̸=σ′

cσ,β

(
δβ,◦

(
θσ

′

σ,β

)q
+ δβ,•

(
θlσ,β
)q)

(δσ′,s′ − δσ,s′)⟨k⟩σ,β (37)

The term (δβ,•...) stands for the terms corresponding to anticonformists, but since the cal-

culations are analogous, we omit it for clarity. Now note that if ∀s,η⟨k⟩s,η = ⟨k⟩, then
d
dt

(∑
s′
∑

η′ e
ηη′

ss′

)
is equal to dcs,η

dt
, using the quotient rule it is straightforward to show that

d
dt

∑
s′

∑
η′ e

ηη′
ss′

cs,η
= 0. This means that if voter classes are homogeneous w.r.t the average node
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degree, then such a correlation will not emerge in the pair approximation system. Hence,

from Eq. (35) we get: ∑
s′

∑
η′

eηη
′

ss′ = cs,η (38)

which reduces the number of independent variables by 2S for the quenched system and S

for the annealed one, allowing us to describe the evolution of the system solely with edge

concentrations.

IV. RESULTS

The aim of this work was to check whether quenched anticonformity can induce discrete

phase transitions and hysteresis not only for the complete graph (⟨k⟩ = N − 1) but also

for sparser networks. In addition to the analytical PA results, we also conducted computer

simulations on random graphs, random regular graphs, and Barabási–Albert scale-free net-

works to verify whether discontinuous transitions actually occur. This is crucial because PA

can predict discontinuous phase transitions and hysteresis even in cases where simulations

suggest continuous transitions [15, 39]. To generate random graphs we use a Watts-Strogatz

algorithm with β = 1, for which every edge in the graph is randomly rewired and every

vertex has at least ⟨k⟩/2 neighbors. We present results for large graphs, i.e. N = 106 for

q = 2 and N = 5 · 106 for q = 3, as for graphs of this size the outcomes of simulations and

PA closely agree, as shown in Figs. 4 and 5.

We focus on ⟨k⟩ << N , with values inspired by empirical research showing that human

social networks naturally organize into fractal layers comprising groups of sizes 1.5, 5, 15, 50,

150, 500, 1500 and 5000, observed in both face-to-face and digital interactions; for review see

[40, 41]. The smallest layers 1.5 and 5 correspond to our most intimate relationships, such

as a romantic partner, close family, or best friends, while layers 15 and 50 represent good

friends and wider circles of casual but trusted companions, and the 150, known as Dunbar’s

Number, corresponds to our core community, the people we would invite to important life

events.

In this work, we consider networks with the average node degree of 16, 50, and 150. The

adjustment from 15 to 16 neighbors is made purely for computational reasons, since some of

the graph generating algorithms that we consider produce even average node degree. Sparser
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networks are difficult to study due to model constraints, particularly for larger q, because

reliable results require ⟨k⟩ to be sufficiently large relative to q [34, 39]. For the same reason,

we limit our attention to q = 2 (Fig. 4) and q = 3 (Fig. 5). These values correspond to

interacting groups of 3 and 4 people (one target agent and q source agents), which were

recently used in social experiments on strategic anticonformity [42]. Moreover, we focus on

three-state systems, S = 3, for which the puzzling effect of switching from a continuous to a

discontinuous phase transition under quenched anticonformity was observed on a complete

graph [22].

Results shown in Figs. 4 and 5 demonstrate that, under quenched disorder, a discon-

tinuous phase transition indeed occurs. In the quenched approach, both hysteresis and the

jump in stationary state concentrations increase with increasing ⟨k⟩, while in the annealed

approach the situation is somewhat reversed: the transition becomes sharper for smaller

values of ⟨k⟩. The corresponding increase in hysteresis for the quenched case and decrease

for the annealed case with respect to the average node degree ⟨k⟩, is clearly shown in Fig.

6.

We determine the width of hysteresis, presented in Fig. 6, as the difference between

the upper spinodal (the greatest value of p for which there exists an ordered stationary

solution) and the lower spinodal (the lowest value of p for which the disordered state is a

stationary solution). For the annealed disorder, the results of PA indicate a non-zero width

of hysteresis for small values of ⟨k⟩, which is clearly visible for q = 3 (left panels of Fig. 5),

and much less so for q = 2 (top left panel of Fig. 4). However, hysteresis increases as q

increases and ⟨k⟩ decreases, and PA is known to yield inaccurate approximations in these

cases [34, 39]. In contrast, for the quenched disorder the width of hysteresis grows with the

average node degree. When ⟨k⟩ approaches the complete-graph limit, the PA predictions for

both annealed and quenched scenario are in agreement with the mean-field and simulation

results [22]. For sparser networks, the pair approximation agrees with simulations only in

the quenched case, where hysteresis is clearly observed, as shown in the right panels of Figs.

4 and 5. In the annealed case, the hysteresis observed in simulations is absent or miniscule

(with faint traces visible in panels (c) and (e) of Fig. 5) and remains inconsistent with PA

predictions.
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FIG. 4. The influence of graph density on phase transitions within PA and simulations.

Stationary values of state concentrations (of the highest and lowest occupied state) obtained from

PA (solid lines) and Monte Carlo simulations on random graphs (markers) for the three-state

(S = 3) q-voter model with q = 2 in the annealed (left panels: a, c, e) and quenched (right panels:

b, d, f) approaches. Empty symbols correspond to results obtained from an initially disordered state

(1/3 of voters in each state at t = 0), whereas filled symbols correspond to the initial condition

where all voters are in the same state. Panels (a)-(b) show results for ⟨k⟩ = 16, (c)-(d) for ⟨k⟩ = 50,

and (e)-(f) for ⟨k⟩ = 150. The shaded area highlights the hysteresis region obtained from PA.
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FIG. 5. The influence of graph type with a fixed density of ⟨k⟩ = 16 on phase transitions

within PA and simulations. Stationary values of state concentrations (of the highest and lowest

occupied state) obtained from PA (solid lines) and Monte Carlo simulations (markers) for the three-

state q-voter model with q = 3 and ⟨k⟩ = 16 on Barabási–Albert (top panels: a, b), random

regular (middle panels: c, d) and random (bottom panels: e, f) graphs in the annealed (left: a, c,

e) and quenched (right: b, d, f) disorder. Empty shapes mark results obtained from initial disorder,

i.e. 1/3 of voters in each state at t = 0, while filled shapes correspond to the initial condition in

which all voters are in the same state. Shaded area highlights the hysteresis region obtained from

PA.
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FIG. 6. The influence of graph density on the width of hysteresis within PA. The width

of hysteresis, calculated as the difference between the upper and lower spinodals and represented

by the shaded areas in Figs. 4 and 5 with respect to the average node degree ⟨k⟩ obtained from

PA for the three-state q-voter model with the annealed (dotted lines) and quenched (solid lines)

disorder.

V. CONCLUSIONS

The study of the role of quenched disorder has a long tradition in the physics of phase

transitions, and it is generally known that such disorder rounds or even completely eliminates

discontinuous phase transitions [17–19, 43]. In the field of opinion dynamics, the problem

has been investigated both in terms of network connections [44, 45] and in terms of agent

behavior [15, 22]. The latter aspect is related to the so-called person-situation debate [46],

a long-standing discussion in psychology about whether behavior is determined primarily

by stable personal traits (the “person” view, naturally corresponding to quenched disorder)

or by external situational factors (the “situation” view, corresponding to annealed disorder).

More recently, annealed and quenched dynamics have been compared in the mean-field (well-

mixed population) limit within a general framework for binary-choice dynamics, in which

agents update their states using two mechanisms such as conformity and anticonformity,

among others. Within this framework, the conditions on transition probabilities under

which annealed and quenched dynamics become equivalent were identified [47].
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Comparisons between quenched and annealed approaches have also been carried out on

various random graphs, but only within specific models: (1) the binary q-voter model with

independence and (2) the binary q-voter model with anticonformity. For the multistate q-

voter model, such a comparison has so far been performed only on the complete graph: for

the model with independence [16] and for the model with anticonformity [22]. An intriguing

result has been obtained for the latter. On the complete graph, which corresponds to the

mean-field limit, the annealed version of the q-voter model with anticonformity displays only

continuous phase transitions, regardless of the number of states S and the influence group

size q. In contrast, the quenched version exhibits discontinuous phase transitions for S ≥ 3

and q ≥ 2. The aim of this work was to test whether this unexpected effect also persists on

sparser graphs.

Our results show that quenched anticonformity can indeed induce discontinuous phase

transitions and hysteresis not only on the complete graph but also on sparser networks.

We verified this effect using pair approximation and Monte Carlo simulations on random

graphs, random regular graphs, and Barabási-Albert scale-free networks. In all these cases,

quenched dynamics consistently produce discontinuous transitions, with the hysteresis width

increasing with network density. In contrast, under annealed dynamics, continuous transi-

tions sharpen as the average degree decreases, leading to discontinuous transitions in PA

predictions but only minimal or no hysteresis in MC simulations. Such inconsistencies be-

tween PA and simulation results have also been reported for several versions of the binary

q-voter model with anticonformity [15, 39].

Empirical evidence shows that anticonformity can indeed emerge and be induced in social

groups, demonstrating that it is not merely a theoretical construct [42]. Theoretically, it has

been shown that anticonformity can depolarize already polarized groups [27], a surprising

and nontrivial effect. Together, these findings suggest that anticonformity can act as a highly

intriguing social response, puzzlingly shaping collective opinion dynamics and influencing

phase transitions in social systems. Future research should examine whether analogous

phenomena occur in other multistate opinion dynamics models, shedding light on the general

role of anticonformity in shaping collective behavior.
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[23] A. Jȩdrzejewski, Physical Review E 95 (2017), 10.1103/PhysRevE.95.012307.

[24] T. Gradowski and A. Krawiecki, Phys. Rev. E 102, 22314 (2020).

[25] H. Olsson and M. Galesic, Trends in Cognitive Sciences 28, 907 (2024).

[26] M. Fosgerau, P. O. Lindberg, L.-G. Mattsson, and J. Weibull, Journal of Mathematical Eco-

nomics 74, 56 (2018).

[27] A. Lipiecki and K. Sznajd-Weron, Expert Systems with Applications 285, 127879 (2025).

[28] P. Nyczka, K. Sznajd-Weron, and J. Cisło, Phys. Rev. E 86, 11105 (2012).

[29] P. Mullick and P. Sen, PLoS ONE 20 (2025), 10.1371/journal.pone.0316889.

[30] M. Mobilia, Physical Review E 92, 012803 (2015).

[31] A. Mellor, M. Mobilia, and R. K. P. Zia, Physical Review E 95, 012104 (2017).

[32] A. R. Vieira and C. Anteneodo, Physical Review E 97 (2018), 10.1103/PhysRevE.97.052106.

[33] A. R. Vieira, A. F. Peralta, R. Toral, M. S. Miguel, and C. Anteneodo, Physical Review E

101 (2020), 10.1103/PhysRevE.101.052131.

[34] L. S. Ramirez, F. Vazquez, M. San Miguel, and T. Galla, Physical Review E 109 (2024),

10.1103/PhysRevE.109.034307.

23



[35] M. J. d. Oliveira, J. F. F. Mendes, and M. A. Santos, Journal of Physics A: Mathematical

and General 26, 2317 (1993).

[36] J. P. Gleeson, Phys. Rev. X 3, 021004 (2013).

[37] F. Vazquez and V. M. Eguíluz, New Journal of Physics 10, 63011 (2008).
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